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Face Recognition

Access control

Surveillance

Easy people tagging
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Typical Face Recognition System

 Face detection Face alignment  Face representation Face classification
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Partial Faces Exist in the Wild

Under crowded scenes:

Occluded by objects:
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Challenges
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Challenges

Unreliable face alignment

• Most face alignment approaches require landmark detection

• Missing landmarks in partial faces

Less discriminative description

• Different facial parts of the same person  Large intra-class distance

• Description of the occluded objects  Small inter-class distance
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Challenges

The LFW dataset

 HDLBP: 84.08%

 VGG-16: 97.27%

The partial LFW dataset

 HDLBP: 49.32%

 VGG-16: 71.27%
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Partial faces deserve more attention!
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Possible Solutions

Only describe the common facial parts

Occlusion removal?

• Difficult to detect occlusions from an unaligned face accurately

• Description of different facial parts for the same person

Component-based methods?
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Component-Based Methods [1]

[1] Bernd Heisele, Purdy Ho, Jane Wu, and Tomaso Poggio, Face Recognition: 
Component-Based Versus Global Approaches, CVIU, vol. 91, no. 1, pp. 6-21, 2003. 9
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Keypoint-Based Methods [2,3]

[2] Shengcai Liao, Anubhav K Jain, and Stan Z Li, Partial Face Recognition: Alignment-
Free Approach, TPAMI, vol. 35, no. 5, pp. 1193-1205, 2013.

[3] Renliang Weng, Jiwen Lu, and Yap-Peng Tan, Robust Point Set Matching for Partial 
Face Recogniton, TIP, vol. 25, no. 3, pp. 1163-1176, 2016. 10
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Motivation

Existing local keypoint-based approaches rely heavily on the 
descriptors, ignoring the topological structural information

The structural information of facial parts are relatively stable, 
which would enhance the robustness of the keypoint matching
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Flowchart

 Feature Extraction
• SIFT keypoint detector and SiftSurfSILBP descriptor

 Keypoint Filter
• Lowe’s matching algorithm to remove obvious outliers

• Lowe’s matching relies on descriptors, which fails to exploit the geometric information

 Topology Preserving Graph Matching
• Delaunay triangulation to construct the graph

• Estimate a non-rigid transformation from the probe image to the gallery image

 Face Matching
12
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Topology Preserving Graph Matching

Estimate a non-rigid transformation to match the graphs 

Objective function:

• Textural cost

• Node-wise matching cost

• Edge-wise matching cost

Outlier removal
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Face Matching

We compute the distance between probe and gallery faces as 
follows:

 In proportion to the average loss

 Inverse proportion to the number of matching pairs
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Experimental Results

LFW

• 13233 labeled faces of 5749 subjects

• Random transformation

PubFig

• 58797 images of 200 people

• Random transformation

AR

• 126 identities with 70 males and 56 females

• 13 facial images for an identity in a session:

- 4 with different expressions 

- 3 under various illuminations

- 3 wearing sunglasses

- 3 wearing scarves 
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Evaluation on LFW and PubFig

The partial LFW dataset The partial PubFig dataset
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Evaluation on AR

The AR dataset

17



i-VisionGroup@Tsinghua

Future Works

The keypoint-based approach

• Exploit higher order structural information for the graph

• Deep graph matching approaches to learn reliable transformation

• Usage of facial structure as strong prior knowledge

Learning alignment-free local facial descriptor

Partial face alignment
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Thanks!
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