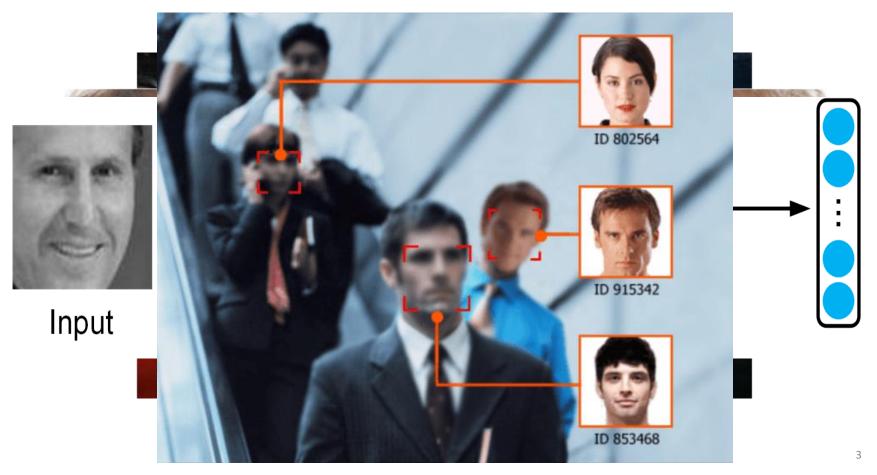


i-VisionGroup@Tsinghua

Topology Preserving Graph Matching for Partial Face Recognition

Yueqi Duan, Jiwen Lu, Jianjiang Feng, Jie Zhou Tsinghua University, China


Face Recognition

□ Access control

Typical Face Recognition System

 $\square Face detection \rightarrow Face alignment \rightarrow Face representation \rightarrow Face classification$

Partial Faces Exist in the Wild

□ Under crowded scenes:

4

Challenges

Challenges

Unreliable face alignment

- Most face alignment approaches require landmark detection
- Missing landmarks in partial faces

Less discriminative description

- Different facial parts of the same person \rightarrow Large intra-class distance
- Description of the occluded objects \rightarrow Small inter-class distance

Challenges

The LFW dataset

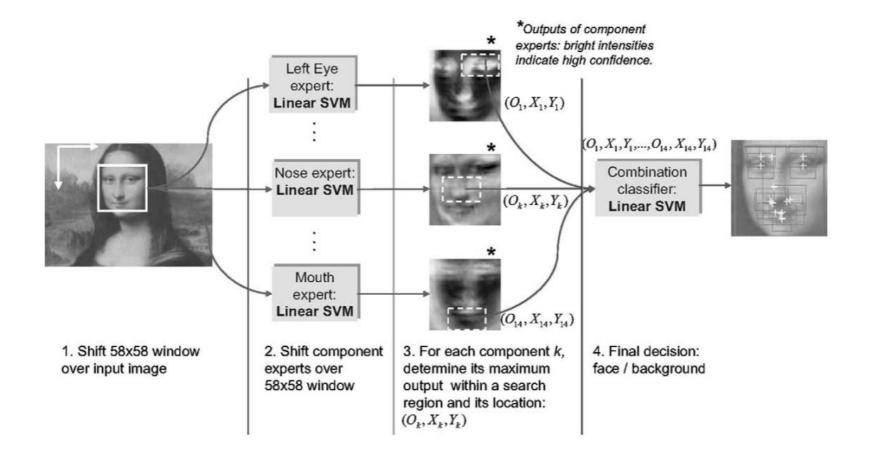
The partial LFW dataset

□ HDLBP: 84.08%□ VGG-16: 97.27%

HDLBP: 49.32%VGG-16: 71.27%

Partial faces deserve more attention!

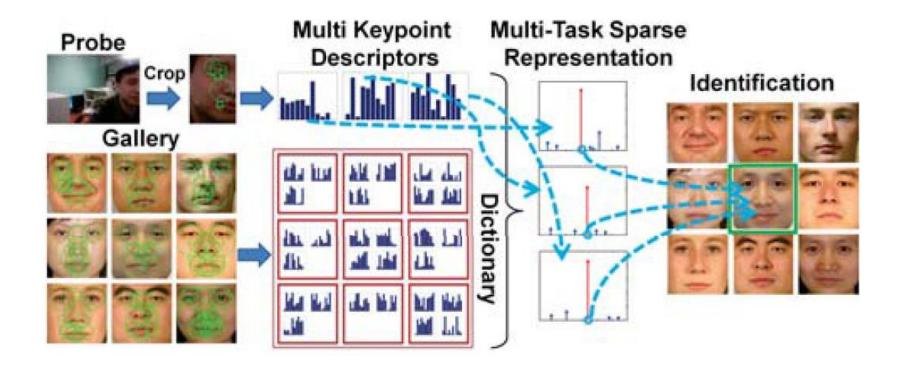
Possible Solutions


Only describe the common facial parts

Occlusion removal?

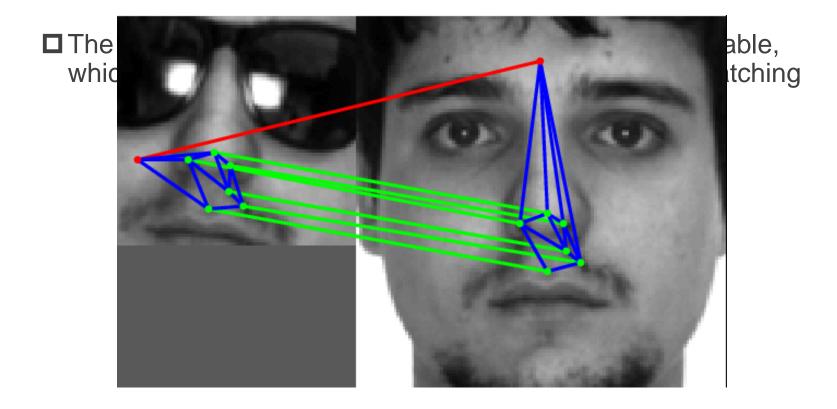
- Difficult to detect occlusions from an unaligned face accurately
- Description of different facial parts for the same person

Component-based methods?


Component-Based Methods ^[1]

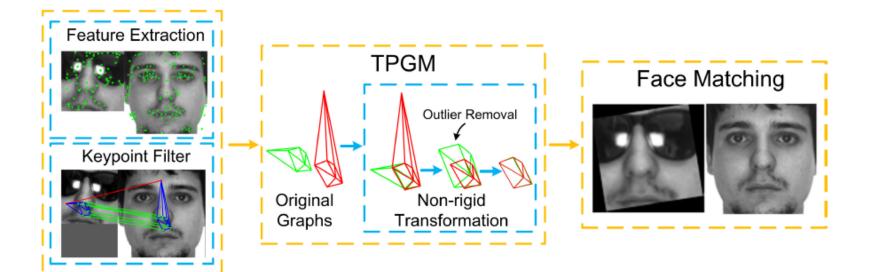
[1] Bernd Heisele, Purdy Ho, Jane Wu, and Tomaso Poggio, Face Recognition: Component-Based Versus Global Approaches, CVIU, vol. 91, no. 1, pp. 6-21, 2003.

Keypoint-Based Methods ^[2,3]



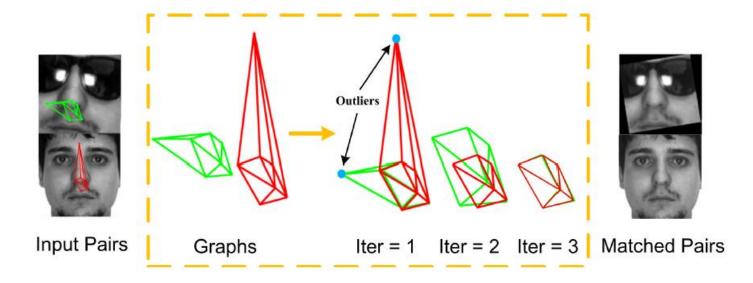
[2] Shengcai Liao, Anubhav K Jain, and Stan Z Li, Partial Face Recognition: Alignment-Free Approach, TPAMI, vol. 35, no. 5, pp. 1193-1205, 2013.

[3] Renliang Weng, Jiwen Lu, and Yap-Peng Tan, Robust Point Set Matching for Partial Face Recogniton, TIP, vol. 25, no. 3, pp. 1163-1176, 2016.


Motivation

Existing local keypoint-based approaches rely heavily on the descriptors, ignoring the topological structural information

11


Flowchart

Feature Extraction

- SIFT keypoint detector and SiftSurfSILBP descriptor
- Keypoint Filter
 - Lowe's matching algorithm to remove obvious outliers
 - Lowe's matching relies on descriptors, which fails to exploit the geometric information
- Topology Preserving Graph Matching
 - Delaunay triangulation to construct the graph
 - Estimate a non-rigid transformation from the probe image to the gallery image
- Face Matching

Topology Preserving Graph Matching

Estimate a non-rigid transformation to match the graphs

Objective function:

- Textural cost
- Node-wise matching cost
- Edge-wise matching cost
- Outlier removal

$$\min J = K_t(\mathbf{t}^P, h^t(\mathbf{t}^P)) + \lambda_p K_p(f^p(\mathbf{p}^P), h^p(\mathbf{p}^P)) + \lambda_q K_q(f^q(\mathbf{q}^P), h^q(\mathbf{q}^P)) .$$

Face Matching

We compute the distance between probe and gallery faces as follows:

$$d = \frac{\bar{d}}{\sum_{i,j} \mathbf{X}_{ij}} = \frac{J_{min}}{\left(\sum_{i,j} \mathbf{X}_{ij}\right)^2} = \frac{K_t + \lambda_p K_p + \lambda_q K_q}{\left(\sum_{i,j} \mathbf{X}_{ij}\right)^2}$$

□ In proportion to the average loss

Inverse proportion to the number of matching pairs

Experimental Results

LFW

- 13233 labeled faces of 5749 subjects
- Random transformation

PubFig

- 58797 images of 200 people
- Random transformation

DAR

- 126 identities with 70 males and 56 females
- 13 facial images for an identity in a session:
 - 4 with different expressions
 - 3 under various illuminations
 - 3 wearing sunglasses
 - 3 wearing scarves

Evaluation on LFW and PubFig

□The partial LFW dataset

Method	$VR \pm S_E$
HDLBP	49.32 ± 1.09
CNN	71.27 ± 1.38
CPD-SiftSurfSILBP	61.62 ± 1.19
MKD-SRC-GTP	68.18 ± 1.77
MLERPM-SiftSurf	65.55 ± 1.53
MLERPM-SiftSurfLBP	67.22 ± 1.83
LAIRPM-SiftSurf	70.40 ± 1.02
LAIRPM-SiftSurfSILBP	70.73 ± 1.68
RPSM-SiftSurf	70.81 ± 1.46
RPSM-SiftSurfSILBP	71.65 ± 1.57
TPGM-SiftSurfSILBP	73.48 ± 1.12

□The partial PubFig dataset

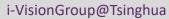
Method	rank = 1	rank = 10	rank = 20
SiftSurfSILBP	25.00	49.29	57.86
CPD	28.36	51.93	62.29
MLERPM	27.86	52.86	64.29
MKD-SRC-GTP	38.57	62.14	72.14
LAIRPM	37.14	64.29	72.86
RPSM	42.86	65.00	74.29
TPGM	43.57	66.43	75.71

Evaluation on AR

□ The AR dataset

Method	S1-G	S1-S	S2-G	S2-S
CPD	71.00	75.67	49.33	61.00
MLERPM	75.00	78.33	53.33	66.67
LAIRPM	87.33	88.33	56.33	81.33
MKD-SRC-GTP	82.33	83.33	57.67	76.33
RPSM	88.67	90.33	63.67	85.67
TPGM	89.33	91.00	65.00	86.67

Future Works


□ The keypoint-based approach

- Exploit higher order structural information for the graph
- Deep graph matching approaches to learn reliable transformation
- Usage of facial structure as strong prior knowledge

Learning alignment-free local facial descriptor

Partial face alignment

