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Abstract—In this paper, we propose a GraphBit method to learn unsupervised deep binary descriptors for efficient image
representation. Conventional binary representation learning methods directly quantize each element according to the threshold without
considering the quantization ambiguousness. The elements near the boundary dubbed as “ambiguous bits” fail to collect effective
information for reliable binarization and are sensitive to noise that causes reversed bits. We argue that there are implicit inner
relationships among bits in binary descriptors called bitwise interaction, where the related bits can provide extra instruction as prior
knowledge for ambiguousness reduction. Specifically, we design a deep reinforcement learning model to learn the structure of the
graph for bitwise interaction mining, and the uncertainty of binary codes is reduced by maximizing the mutual information with input and
related bits. Consequently, the ambiguous bits receive additional instruction from the graph for reliable binarization. Moreover, we
further present a differentiable search method (GraphBit+) that mines the bitwise interaction in continuous space, so that the heavy
search cost caused by the training difficulties in reinforcement learning is significantly reduced. Since the GraphBit and GraphBit+
methods learn fixed bitwise interaction which is suboptimal for various input, the inaccurate instruction from the fixed bitwise interaction
cannot effectively decrease the ambiguousness of binary descriptors. To address this, we further propose the unsupervised binary
descriptor learning method via dynamic bitwise interaction mining (D-GraphBit), where a graph convolutional network called
GraphMiner reasons the optimal bitwise interaction for each input sample. Extensive experimental results on the CIFAR-10,
NUS-WIDE, ImageNet-100, Brown and HPatches datasets demonstrate the efficiency and effectiveness of the proposed GraphBit,
GraphBit+ and D-GraphBit.

Index Terms—Binary descriptors, unsupervised learning, bitwise interaction, reinforcement learning, differentiable search, graph
convolutional networks
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1 INTRODUCTION

E XTRACTING effective descriptors is one of the most
active issues in computer vision, which is widely appli-

cable in numerous tasks, such as face recognition [38], [42],
image classification [25], [34], object recognition [37] and
many others. Strong discriminative power and low com-
putational cost are two essential properties for an effective
descriptor. On one hand, strong discriminative power en-
ables descriptors to be distinctive in image description and
robust to various transformations. On the other hand, highly
efficient descriptors present low memory cost and high
computational speed, which are suitable for the scenarios of
mobile devices with limited computational capabilities and
real-time requirements. In recent years, a number of deep
binary descriptors have been proposed due to their strong
discriminative power and low computational cost [34], [18].
Binary descriptors substitute real-valued elements with bi-
nary codes which are efficient for storage and matching,
while deep learning obtains high quality representation by

• Ziwei Wang, Han Xiao, Jie Zhou and Jiwen Lu are with the
Beijing National Research Center for Information Science and
Technology (BNRist), Department of Automation, Tsinghua University,
Beijing 100084, China. E-mail: wang-zw18@mails.tsinghua.edu.cn,
h-xiao20@mails.tsinghua.edu.cn, jzhou@tsinghua.edu.cn, luji-
wen@tsinghua.edu.cn.

• Yueqi Duan is with the Beijing National Research Center for In-
formation Science and Technology (BNRist), Department of Electrical
Engineering, Tsinghua University, Beijing 100084, China. E-mail: du-
anyueqi@tsinghua.edu.cn.

• Part of this work was presented in [19].
• Code: https://github.com/ZiweiWangTHU/GraphBit.git.

training numerous parameters with large amount of data.
For most existing deep binary descriptor learning ap-

proaches, binarization is an essential step to quantize each
real-valued element into zero or one, which enhances the
efficiency of the descriptors at the cost of quantization
loss [18]. However, to the best of our knowledge, these
methods directly perform binarization on the real-valued el-
ements to obtain binary codes, which ignores the descriptor
ambiguousness. Binarizing real-valued elements that lie in
the boundary of quantization usually suffers from the “am-
biguous bits”, which fails to receive effective information
from the corresponding input for reliable binarization due
to the high sensitivity to noise.

We argue that there are implicit relationship among bits
for the learned binary codes dubbed as bitwise interaction,
and the related bits can provide extra instruction for the
ambiguous bits as prior knowledge. For example, it is am-
biguous to decide whether a person is tall or short in 5 feet
9 inches. However, the answer becomes more certain if we
consider an additional gender bit of female or an age bit of
young child. In this paper we propose GraphBit, a method
that eliminates the ambiguity through bitwise interaction
mining in a directed acyclic graph. The nodes of the graph
are the elements in binary descriptors and the directed edges
represent bitwise connections. In Figure 1 (a), DeepBit [34]
ignores the reliability during the training procedure and the
learned binary descriptors are ambiguous. On the contrary,
GraphBit maximizes the mutual information between the bi-
nary descriptors and input samples with the mined bitwise
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Figure 1. Comparison of the reliability between DeepBit [34] and Graph-
Bit. We define the reliability of each bit as the Shannon entropy that mea-
sures the uncertainty of the binary descriptor according to (1). Binary
codes with low reliability represent visual information in high uncertainty,
which are sensitive to noise in binarization with bit reversion. In Figure 1
(a), the position and color of the dots demonstrate the reliability of binary
codes, and the arrows represent the directed bitwise interaction. Figure
1 (b) shows the mean reliability averaged on all elements for 16-bit,
32-bit and 64-bit binary descriptors on CIFAR-10 [31]. DeepBit fails to
consider the reliability of learned binary descriptors and obtains hash
codes with ambiguous bits, while our GraphBit learns more confident
binary codes due to the mined bitwise interaction. Moreover, D-GraphBit
further improves the reliability with dynamic bitwise interaction that is
optimal for different input samples. (Best viewed in color.)

interaction. More specifically, we employ neural networks to
parameterize the possibilities of elements being quantized
into one in a binomial distribution, and define the reliability
of each bit as the Shannon entropy that measures the uncer-
tainty of the binary descriptor. We simultaneously train the
parameters of CNN and the structure of the graph, maximiz-
ing the mutual information between binary descriptors and
the observed input under the instruction from the related
bits for ambiguity elimination. For bitwise interaction min-
ing, deep reinforcement learning is leveraged to effectively
explore the large search space, where we define the action
to add or remove directed connections between nodes and
apply the current graph structure as the state. Aiming to
mine the bitwise interaction more efficiently without heavy
search cost in reinforcement learning, we further present
GraphBit+ that employs the gradient descent to optimize
a hypergraph of bitwise interaction in differentiable search.

In fact, the optimal bitwise interaction of learned binary
descriptors varies across different samples. While GraphBit
mines the fixed bitwise interaction for binary codes of all
input, the instruction from the mined bitwise interaction is
usually suboptimal for ambiguity elimination. In order to
address these limitations, we further present unsupervised
binary descriptor learning via dynamic bitwise interaction
mining (D-GraphBit). More specifically, we represent the
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Figure 2. Comparison among the proposed GraphBit, GraphBit+ and
D-GraphBit, where the rectangles with colorful circles represent the
learned binary descriptors. The purple and orange circles mean reli-
able and ambiguous bits respectively, and the red arrows demonstrate
instruction that eliminates ambiguity in the binary codes. GraphBit and
GraphBit+ mine the fixed bitwise interaction for different input samples
via non-differentiable reinforcement learning and differentiable hyper-
graph optimization respectively. In order to acquire the optimal solution
for various input samples, D-GraphBit obtains the dynamic bitwise in-
teraction for each instance via the efficient GraphMiner based on graph
convolutional networks. (Best viewed in color.)

dynamic bitwise interaction by the adjacency matrix which
demonstrates the correlation among different bits, and the
adjacency matrix is learned via the proposed GraphMiner
based on graph convolutional networks. For each sample,
GraphMiner encodes the original binomial distribution of
binarization from the bit space to the interaction space
containing the latent graph structure of bitwise interaction,
reasons the bitwise interaction in the interaction space and
decodes the bitwise interaction back to the bit space to
acquire the distribution of reliable binary descriptors. Figure
1 (b) illustrates the reliability of each bit on CIFAR-10
for 16-bit binary descriptors, where GraphBit significantly
outperforms DeepBit and D-GraphBit further enhances the
reliability. Figure 2 depicts the comparison among Graph-
Bit, GraphBit+ and D-GraphBit. Extensive experiments on
CIFAR-10 [31], NUS-WIDE [15], ImageNet-100 [16], Brown
[8] and HPatches [4] show that our GraphBit, GraphBit+ and
D-GraphBit outperform the state-of-the-art unsupervised
binary descriptors due to the strong reliability. Moreover,
our method can be integrated to other unsupervised hash
code learning techniques as a plug-and-play module to
further strengthen the performance.

This paper is an extended version of our conference
paper [19], where we make the following new contributions:
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(1) We present a differentiable search method (GraphBit+)
for efficient bitwise interaction mining, so that the heavy
search cost of reinforcement learning caused by training
difficulties is significantly reduced.

(2) We propose a D-GraphBit method by learning dynamic
bitwise interaction for each instance, and the instruction
from the mined bitwise interaction is optimal for all
samples that eliminates the ambiguous bits accurately.

(3) We conduct extensive experiments on a wide variety of
datasets to evaluate the proposed GraphBit, GraphBit+
and D-GraphBit, and the results show the effectiveness
and the efficiency of the presented methods. Moreover,
we combine our techniques with other unsupervised
binary descriptor learning techniques to further enhance
the vanilla models.
The presented GraphBit, GraphBit+ and D-GraphBit all

aim to mine the optimal bitwise interaction that is modeled
as a graph for reliable quantization in unsupervised binary
descriptor learning, and they respectively leverage different
search algorithms including reinforcement learning, differ-
entiable search and graph neural networks with various
advantages and limitations in accuracy, inference latency
and training cost as shown in Table 5. D-GraphBit outper-
forms others with respect to accuracy due to the dynamic
bitwise interactions, and slightly increase the inference la-
tency resulted from the lightweight GraphMiner. GraphBit+
significantly reduces the training cost with slight accuracy
degradation compared with GraphBit. Therefore, users can
choose the appropriate one for unsupervised binary de-
scriptor learning according to the accuracy requirement,
training cost budget and the hardware configurations for
deployment.

2 RELATED WORK

In this section, we briefly review five related topics includ-
ing: 1) binary descriptors, 2) unsupervised learning, 3) deep
reinforcement learning, 4) differentiable search and 5) graph
neural networks.

Binary Descriptors: Binary descriptors have attracted
much attention in computer vision due to their efficiency for
storage and matching for deployment, where early works
can be traced back to binary robust independent elemen-
tary feature (BRIEF) [10], binary robust invariant scalable
keypoint (BRISK) [32], oriented FAST and rotated BRIEF
(ORB) [44] and fast retina keypoint (FREAK) [1]. BRIEF
computed binary descriptors through the intensity different
tests between pixels. BRISK obtained scale and rotation
invariance by leveraging a circular sampling pattern. ORB
improved BRIEF by applying scale pyramids and orienta-
tion operators. FREAK utilized retinal sampling grid for
acceleration.

As hand-crafted binary descriptors are heuristics and
usually require strong prior knowledge, a number of learn-
ing based approaches have been proposed and achieved
outstanding performance [52], [55], [56], [21]. For example,
Strecha et al. [52] proposed LDA-Hash by applying linear
discriminant analysis (LDA) before binarization. Trzcinski et
al. [55] presented D-BRIEF by learning discriminative pro-
jections through similarity relationships. They also learned
hash functions with boosting to obtain BinBoost [56]. Fan et

al. [21] proposed a receptive fields descriptor (RFD) by
thresholding responses of two different receptive fields,
rectangular pooling area and Gaussian pooling area.

More recently, several deep binary descriptor learn-
ing approaches have been proposed [36], [63], [22], which
achieve the state-of-the-art accuracy performance. Liu et al.
[36] encouraged the similar images to obtain closer binary
descriptors and punished semantically dissimilar samples
whose binary codes had short Hamming distance, and the
learned binary representations could accurately preserve the
topology of the semantic space. Zhang et al. [63] mined the
semantic similarity between labeled and unlabeled images
and generated pseudo labels for unlabeled images to effec-
tively leverage the limited supervision. Ghasedi et al. [22]
employed Generative Adversarial Networks (GANs) [24] to
learn binary codes through which the reconstructed images
were encouraged to have minimum semantic discrepancy
with real ones. Nevertheless, these deep binary descriptors
fail to exploit bitwise interactions, which suffer from am-
biguous bits.

Unsupervised Learning: Unsupervised learning enables
models to learn from numerous unlabeled data without
expensive annotation cost. Clustering methods [12] utilize
the cluster index as the pseudo class labels to train the
representation model. Self-supervised learning approaches
[17], [41] design the pretext tasks to provide hand-crafted
auxiliary supervision with human priors, where the learned
semantics are assumed to be transferred to the downstream
tasks. Instance specificity analysis methods [27], [13] regard
each sample as a independent class, and take the instance
and the variant counterparts as positive pairs. These meth-
ods assume that the instance semantic similarity is auto-
matically extracted by the instance-wise supervision. Neigh-
borhood discovery approaches [59] progressively mine the
instance-to-instance relationship in local regions with class
consistency maximization. In this paper, we employ the
energy constraint to learn discriminative binary descriptors
in an unsupervised manner.

Deep Reinforcement Learning: Deep Reinforcement
learning aims to learn the policy of sequential actions for
decision-making problems with discriminative deep neural
networks. Deep reinforcement learning algorithms have ob-
tained very promising results on a wide variety of vision
tasks such as object detection [43], visual tracking [28],
network architecture search [65] and many others. More
recently, deep reinforcement learning approaches have been
employed in visual representation learning [54], [6], [7]. For
example, Truong et al. [54] applied reward to compute the
suitability of detected keypoints based on the final registra-
tion quality. Bhowmik et al. [6] directly optimized the high-
level task loss of image matching with principles from rein-
forcement learning, so that the non-differentiable key point
selection, descriptor matching and robust model fitting were
incorporated in a complete pipeline. Tyszkiewicz et al. [57]
bridged the training and inference stage of local feature
learning via the probabilistic model, where analytical policy
gradient was presented to enhance the optimization conver-
gence. However, to our best knowledge, deep reinforcement
learning has not been extended to binary representation ex-
traction, which is of significant importance in visual analysis
tasks.
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Differentiable Search: In order to efficiently explore
the large search space, differentiable search strategies have
been utilized for network architecture search [35], mixed-
precision quantization [9] and feature aggregation [26]. Dif-
ferentiable search usually models each choice as a com-
ponent in the superstructure, and optimizes the branch
importance with gradient descent to acquire the optimal
solution. Liu et al. [35] relaxed the architecture space to
be continuous where component importance weights and
hypernet parameters were jointly trained. Cai et al. [9]
assigned different bitwidths for each parallel branches in
the hypernet for mixed-precision quantization, and selected
the bitwidth with the largest value during inference to
achieve the optimal accuracy-complexity trade-off. Guan et
al. [26] optimized the feature weights via the bridge loss that
strengthened knowledge distillation via the bi-directional
path between student and teachers. To further reduce the
search cost caused by reinforcement learning in GraphBit,
we generalized the differentiable search strategies to bitwise
interaction mining.

Graph Neural Networks: Graph neural networks
(GNN) can learn informative representations for non-
Euclidean data in action recognition [49], person re-
identification [62] and visual matching [46]. Sarlin et al.
employed graph neural networks to predict the cost func-
tion of the optimal transportation, which was the alternative
problem of the original feature matching. Mazur et al. [39]
modeled the compact data representations as the differen-
tiable weighted graphs and mapped the data into a non-
vector space where the shortest path was used as the metric.
Moreover, graph convolutional networks [30], [14] were
further proposed to hierarchically aggregate information to
learn discriminative representation for non-Euclidean data.
For instance, Chen et al. [14] proposed the graph-based
global reasoning networks that adaptively selected the re-
ceptive field of convolution based on pixel correlation. In
this paper, we extend the graph convolutional networks to
mine the dynamic bitwise interaction for binary descriptor
learning in the interaction space.

3 BITWISE INTERACTION MINING FOR BINARY
DESCRIPTOR LEARNING

In this section, we first introduce the reliability of binary
codes and present the objective function of GraphBit. Then
we detail the deep reinforcement learning model for bitwise
interaction mining. Finally, we present the differentiable
search of Graphbit+ that significantly reduces the cost of
interaction mining.

3.1 Reliability of Binary Codes

Feature elements lying in the quantization boundary are
sensitive to noise in binary descriptor learning, and the
ambiguous bits in low reliability result in weak discrimina-
tive power due to the lack of effective information from the
inputs. Different from most existing methods, we explicitly
learn reliable binary codes for accurate visual analysis. As
shown in Figure 3, we utilize the architecture of VGG16 [50]
as the backbone of the deep hashing model, and substitute
the softmax layer with a fully-connected layer followed

by an activation function of sigmoid. We first perform a
sigmoid function at the end of CNN to normalize each
element into the range [0, 1] for reliability estimation, which
parameterizes the possibility of being quantized to one in
a binomial distribution. The binarization results are more
certain for the probability close to one or zero, while are
ambiguous for the value near 0.5. Hence, we define the
reliability according to the Shannon Entropy:

r(bkn) = 1 +
1

Z
[skn log skn + (1− skn) log(1− skn)] (1)

where bkn and skn respectively mean the kth binary descrip-
tor bit and kth real-valued feature element after sigmoid for
the nth sample. r(bkn) represents the reliability of bkn, and
Z is a constant that normalizes the reliability into the range
[0, 1]. The Shannon Entropy demonstrates the uncertainty
of binary descriptors, which can be applied to evaluate the
reliability. Our goal is to maximize the reliability for binary
codes through the mined bitwise interaction.

3.2 Objective Function

Let X = [x1,x2, · · · ,xN ] be the N input samples of the
image set. The objective of GraphBit is to simultaneously
learn deep binary descriptors B = [b1,b2, · · · ,bN ] and
the adjacency matrix Φ ∈ [0, 1]K×K of the graph where
K is the length of the binary descriptors. The element in
the ith row and jth column of Φ is denoted as φij , which
equals to one if the ith bit provides instruction for the
jth bit to eliminate ambiguity. In order to describe bitwise
relationship, we denote the relationship between random
variables X and Y by mutual information I(X;Y ), which
describes the decrease of entropy of X when Y is tractable:

I(X;Y ) = H(X)−H(X|Y ), (2)

The entropy is defined as follows:

H(X) = −Ex∼p(X)[log p(x)] (3)
H(X|Y ) = −Ey∼p(Y )[Ex∼p(X|Y )[log p(x|y)]] (4)

where H(X) and H(X|Y ) reveal the uncertainty of the
variables. Inspired by the above motivations, we formulate
the following objective function to learn GraphBit:

min J = J1 + αJ2 + βJ3

=
K∑
k=1

||
N∑
n=1

(bkn − 0.5)||22 − α
N∑
n=1

K∑
k=1

I(bkn; xn, b̂n)

+ β
N∑
n=1

K∑
k=1

||p(bkn|xn)− p(bkn|xn, b̂n)||1, (5)

where α and β are two parameters to balance the weights of
different terms, and b̂n means the binary descriptor without
considering the bitwise interaction. || · ||1 and || · ||2 stand
for the L1 and L2 norm respectively. p(bkn|xn) represents
the conditional distribution of bkn given the input xn, and
p(bkn|xn, b̂n) means the binomial distribution of bkn under
the condition xn and b̂n. The difference between p(bkn|xn)
and p(bkn|xn, b̂n) is that the latter considers the related bits
according to the mined bitwise interaction. The above two
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Figure 3. The flowchart of the proposed GraphBit. For each input image, we first learn a normalized feature by the deep hashing model with
the VGG16 architecture where the softmax layer is substituted with a fully-connected layer followed by a sigmoid function. The normalized feature
ranges from 0 to 1, parameterizing the possibility of being binarized into one. Then, we simultaneously mine the bitwise interaction via reinforcement
learning and optimize the parameters of the deep hashing model with the mined bitwise interaction, which eliminates the ambiguity of the binary
descriptors with enhanced reliability.

conditional distributions are parameterized by the backbone
networks in the following:

p(bkn|xn) ∼ B(σ(tkn))

p(bkn|xn, b̂n) ∼ B(σ(tkn +
K∑
i=1

wbikφiktin)) (6)

where tkn means the kth real-valued feature element of the
kth sample and σ represents the sigmoid function. B(x)
stands for the binomial distribution with the probability x
being quantized into one. Meanwhile, wbik is the element in
the ith row and jth column of the learned interaction weight
matrix wb, which demonstrates the influence on bkn from
bin for all input samples according to the mined bitwise
interaction. Meanwhile, the element φik in the adjacency
matrix that equals to one indicates the instruction from bin
to bkn. We detail the physical meanings of the three terms in
the objective function as follows:

1) J1 is to make each bit in the learned GraphBit evenly
distributed. If an element in the learned binary descrip-
tors stay the same for all the samples, it would present
no discriminative power. Instead, we encourage each
bit to be zeros for half of the samples and ones for the
others to convey more information.

2) J2 expects the reliability of the learned binary descrip-
tors to be enhanced under the instruction of the related
bits and the corresponding input, where maximizing
the mutual information is equivalent to reliability en-
hancement due to the consistent form. For the indepen-
dent bits with no bitwise interaction, the uncertainty
is reduced by maximizing the mutual information be-
tween only the input and the hash codes.

3) J3 aims to prevent the interacted bits to become trivial
with regularization. Under the guidance of J2, those
ambiguous bits that fail to collect effective information
from the inputs may tend to receive extra directions
from other reliable bits. However, they may become
redundant as a repeat of the related bits if suffering
from too strong instructions. Therefore, the constraint
of J3 is to guarantee the independence of the interacted
bits.

We apply variational information maximization to sim-
plify J2 in (5) with the upper bounding, which is then
approximated with Monte Carlo simulation [5]. J2 can be
rewritten in the following:

I(bkn; xn, b̂n)

= H(bkn)−H(bkn|xn, b̂n)

= H(bkn) + Exn∼X[Eb′kn∼p(bkn|xn,b̂n)
[log p(b′kn|xn, b̂n)]]

= H(bkn) + Exn∼X[DKL(p(b′kn|xn, b̂n)||q(b′kn|xn, b̂n))

+ Eb′kn∼p(bkn|xn,b̂n)
[log q(b′kn|xn, b̂n)]]

≥ H(bkn) + Exn∼X[Eb′kn∼p(bkn|xn,b̂n)
[log q(b′kn|xn, b̂n)]]

where b′kn means the variable sampled from the conditional
distribution of bkn, and q(b′kn|xn, b̂n) is the auxiliary distri-
bution for the posterior distribution p(bkn|xn, b̂n). In this
paper, we parametrize q(b′kn|xn, b̂n) based on the mined
bitwise interaction defined in (6). When the auxiliary distri-
bution approaches the true posterior distribution, the bound
becomes tight because DKL(q(b′kn|xn, b̂n)||q(bkn|xn, b̂n))
approaches 0. Since the priors for each bit are set to binomial
distribution with equal possibility to be zero or one, H(bkn)
is regarded to be constant.

During the training stage, we simultaneously optimize
the deep hashing model and the interaction weight matrix
wb. In inference, we obtain the reliable binary descriptors
according to the conditional distribution given the input
and the original distribution of binary descriptors with the
mined bitwise interaction.

3.3 Deep Reinforcement Learning for Bitwise Interac-
tion Mining

In order to effectively explore the large search space, we
employ the policy gradient for bitwise interaction mining.
We denote the policy as πθ(a|s) where θ, a and s represent
the parameters of the policy network, the action and the
state respectively. The policy takes the optimal action for
a given state to achieve the goal, which maximizes the
expected reward over the entire search process. Mining
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Figure 4. An example of deep reinforcement learning based bitwise
interaction mining. We sequentially add directed connections of the 4th-
5th bits, the 1st-3rd bits, the 6th-5th bits and the 6th-3rd bits, and then
remove the connection of the 4th-5th bits. We repeat the process of
bitwise interaction mining until finalizing the structure of graph.

bitwise interaction for ambiguity elimination can be viewed
as a Markov Decision Process (MDP). At each step, the
agent takes the action to add or remove a directional con-
nection between bits based on the current structure of the
graph, which iteratively explores the bitwise interaction to
maximize the reward. The policy network recurrently adds
and removes the edges until convergence or achieving the
maximum step. At the end of the sequence, we retrain the
parameters of CNN with the learned structure of graph
under the guidance of the objective function.

States: The state space S represents the current structure
of the graph, which can be defined as a binary matrix Ws ∈
{0, 1}K×K . For the element wsij ∈ Ws, it equals to one if a
directed edge exists from the ith bit to the jth bit, and equals
to zero otherwise.

Action: Given the current graph Ws, the agent aims to
select one action from all possible connections and discon-
nections.A is the set of actions divided into three categories:
Ac

⋃
Ar

⋃
{stop}. The action to add a bitwise edge is de-

noted as Ac, while Ar represents to remove bitwise connec-
tions. The action of stop is executed for convergence or the
maximum time step. Figure 4 shows an example of stage
transition with the actions. Wt ∈ [0, 1]K×K parameterizes
the probability of actions that adds edges on the graph,
whose element wtij in the ith row and jth column represents
the probability of adding connection from the ith bit to the
jth bit. We select the actions based on the following rules:

1) Add: We connect the ith bit to the jth bit if the sampling
strategy based on Wt selects the element wtij and the
maximal element in Wt is larger than k1.

2) Remove: We disconnect the original edge from the ith
bit to the jth bit if wtij 6 k2.

3) Stop: We terminate the current epoch of bitwise interac-
tion mining when achieving the maximum time step or

convergent reward.
In the action selection criteria, the hyperparameter k1 pre-
vents excess connections in the graph to avoid redundant
bits, where only bits with high connection probability are
regarded to be interacted. The other hyperparameter k2
decides the probability of interaction removal, because low
probability to connect an edge indicates keeping it discon-
nected.

Reward Function: We define the reward function
R(S,A) in round t as following:

r(st, at) = J(st)− J(st+1) (7)

where r(st, at) ∈ R(S,A) is the reward for the action at
in the state st, and J(st) is objective function of sample
batches in the state st. We consider the bitwise interaction
enabling loss degradation in high quality, which enhances
the discriminative power and the reliability of the learned
GraphBit. We utilize the REINFORCE algorithm [60] to
update parameters in the policy network in response to the
rewards from the environment.

3.4 Differentiable Search for Bitwise Interaction Mining
Reinforcement learning based search strategies effectively
explore the large search space for bitwise interaction min-
ing, while still suffers from high training cost due to the
following two reasons. First, computing the reward function
requires to feed forward the sample batch two times for loss
difference acquisition. Second, the agent training usually
converges with a large number of epochs because of the
reward fluctuation in the environment [40]. In order to
decrease the search cost, we present differentiable search
strategy called GraphBit+ for bitwise interaction mining.
Differentiable search usually constructs a superstructure
where various choices in the search space form different
branches, and adds the output of all branches for inference.
The model parameters and component importance weights
are optimized via gradient descent, and the edges with
the high importance weight are selected as the bitwise
interaction. In order to mine the bitwise interaction with
differentiable search, we rewrite the conditional distribution
of binary descriptors given bitwise interaction and input in
the following:

p(bkn|xn, b̂n) ∼ B(σ(tkn +
K∑
i=1

wbikaiktin)) (8)

where aij means the element in the ith row and jth column
of normalized adjacency weight matrix. The normalization
is implemented by aij = exp(a0ij)/

∑K
i=1

∑K
j=1 exp(a0ij),

and a0ij represents the original adjacency weights. Large
aij represents high existence probability of the interaction
from the ith bit to the jth one. On one hand, the adjacency
weights should be reliable so that the interaction among bits
clearly exists or not without obscurity. On the other hand,
the adjacency weights are required to be sparse in order
to avoid redundancy brought by excess bitwise interaction.
To combine the above objectives, we formulate the loss
function as follows despite of the objectives (5) in GraphBit:

J4 = −
K∑
i=1

K∑
j=1

||aij − 0.5||22 (9)
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Figure 5. The pipeline of the presented D-GraphBit. The deep hashing model first learns the binary descriptor distribution without bitwise interaction,
which is then mapped to the interaction space by the encoder. The interaction reasoning network mines the dynamic bitwise interaction in the
interaction space and the decoder transforms the interacted node features to the distribution of reliable hash codes, so that the ambiguous bits are
eliminated with the optimal bitwise interaction.

J4 maximizes the distance between the elements in the
normalized adjacency weight matrix and 0.5, so that the
element is enforced to approach one or zero to obtain the
reliable graph. Since the summation over elements in the
normalized adjacency weight matrix equals to one, J4 also
sparsifies the connected edges with most elements remain-
ing near zero. Therefore, only bitwise interaction with strong
correlation is mined without bringing redundancy in binary
descriptor learning. Combining all loss terms, we rewrite
the overall learning objectives for GraphBit+ as follows:

Joverall = J1 + αJ2 + βJ3 + γJ4 (10)

For each epoch of bitwise interaction mining, the adjacency
weights aij and the interaction weights wbij are iteratively
optimized. When adjacency weight update completes, the
adjacency matrix element φij is set to one for top-k element
aij in adjacency weight matrix and is set to zero otherwise.
Afterwards, the interaction weights are finetuned where the
binary descriptors are sampled from the conditional distri-
bution in (6) for loss computation. We obtain the reliable
binary descriptors according to the conditional distribution
given interacted bits and input in (6) during inference.

4 LEARNING UNSUPERVISED BINARY DESCRIP-
TORS VIA DYNAMIC BITWISE INTERACTION MINING

We first provide an overview of the proposed D-GraphBit.
Then we detail the presented GraphMiner that consists of
a encoder that maps the descriptors from the bit space
to the interaction space, an graph convolutional layer that
dynamically mines the bitwise interaction in the interaction
space and a decoder that obtains the reliable binary codes.
Finally, we present the training details of our D-GraphBit.

4.1 Overview

The optimal bitwise interaction of binary descriptors varies
across different samples. While the GraphBit mines the
bitwise interaction statically, the instruction from the fixed
graph is suboptimal for the binary descriptors of all sam-
ples in ambiguity elimination. In order to address these
limitations, we further propose D-GraphBit to learn the
interaction graph for each sample via the graph convolu-
tional network based dynamic bitwise interaction mining

module called GraphMiner, so that the instruction from
the optimal bitwise interaction is utilized to extract reliable
binary descriptors.

Figure 5 demonstrates the overall pipeline of the pro-
posed D-GraphBit. The binomial distribution of binary de-
scriptors without bitwise interaction is parameterized by the
deep hashing model, which is fed forward to the Graph-
Miner to generate binomial distribution of reliable binary
descriptors with dynamic bitwise interaction mining. The
presented GraphMiner includes three parts: an encoder that
maps the distribution of binary descriptors without bitwise
interaction from the bit space to the interaction space, an
interaction reasoning network that mines the implicit bit-
wise interaction in the interaction space and a decoder that
transforms the interacted node features in the interaction
space to the distribution of reliable hash codes in the bit
space. In the following subsections, we formulate each step
of the GraphMiner in details.

4.2 Encoding from Bit Space to Interaction Space

The encoder aims to map the distribution of binary de-
scriptors without bitwise interaction in the bit space to
the node feature in the interaction space, where dynamic
bitwise interaction can be efficiently mined by the graph
convolutional networks. Since each bit is regarded as a node
in the interaction graph, we first learn the independent
node features hin of the ith bit for the nth binary code
that aggregates the correlation with other bits. We obtain
the independent node features according to the following
formulation:

hin = kei tn (11)

where tn means the real-valued features of the deep hashing
model for the nth sample and kei ∈ RK×K represents the
encoding matrix for the ith independent node feature. The
global information of the binary descriptors without bitwise
interaction is embedded into various independent node fea-
tures by different encoding matrices, which informatively
represent the node states for the following dynamic bitwise
interaction mining.

We employ K fully-connected layers in parallel for the
linear mapping, which attains many benefits including the
following aspects. First, the optimization of the encoding
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matrices implemented as fully-connected layers can be com-
bined in the training pipeline of deep hashing models so
that end-to-end learning is enabled. Second, linear mapping
is simple for implementation and also efficient due to the
low computational cost. Finally, the low model complexity
avoids overfitting for the independent node feature learn-
ing, where low-dimensional real-valued features from the
deep hashing model only contain limited information.

4.3 Mining Dynamic Bitwise Interaction in Interaction
Space

The interaction space contains the latent graph structure of
bitwise interaction for reliable binary code learning. Mining
the dynamic bitwise interaction is equivalent to capturing
the relation among different independent node features,
which can be effectively and efficiently discovered by graph
convolution. Graph convolutional networks are widely used
techniques that have been proven to be effective to process
non-Euclidean data such as point cloud [58] and social
networks [33], because adjacency among nodes instead of
the Euclidean distance among samples is used to measure
the similarity. The graph convolution fuses information for
each node from the adjacent nodes, and the relation among
different nodes are learned via updating the adjacency ma-
trix. Therefore, the graph convolution is compatible with
other differentiable modules. We formulate the adjacency
weight matrix of the nth sample as An = σ(W aHn), where
W a is the learnable adjacency mining matrix and Hn is
the concatenation of independent node features from the
nth sample. To remove the impact of the node degree on
graph convolution, we scale the adjacency weight matrix to
As
n = D−0.5n AnD

−0.5
n . The degree matrix Dn is diagonal,

where the element in the ith row and column is the element
summation in the ith row of the adjacency weight matrix.
The graph convolution acquires the interacted node feature
Zn for the nth sample which contains the mined dynamic
bitwise interaction [30]:

Zn = σ((I + Ân)HnWg) (12)

where I means the identity matrix considering self-
correlation. Denoting the element in the ith row and jth
column of As

n asAsn,ij , we represent the element in the same
position of the normalized adjacency weight matrix Ân by
Ân,ij = exp(Asn,ij)/

∑K
i=1

∑K
j=1 exp(Asn,ij). Moreover, the

learnable state update matrix Wg projects the adjacency
weight matrix to interacted node features. The graph con-
volution first performs Laplacian smoothing so that the
independent node features are propagated across the graph
for information fusion. According to the adjacency weight
matrix where stronger bitwise interaction is represented
by larger edge weights, the state of each node is updated
for interacted node feature acquisition to demonstrate the
mined dynamic bitwise interaction.

4.4 Decoding from Interaction Space to Bit Space

The updated node state represented by interacted node
features Zn considers the dynamic bitwise interaction, and
the decoder aims to map the interacted node features from
the interaction space back to the bit space for reliable binary

descriptor acquisition. Similar to the encoder, we leverage
the linear mapping to predict the distribution of binary
descriptors with bitwise interaction as follows:

t
′

n =
K∑
i=1

kdi zin (13)

where t
′

n means the parameters of the binomial distribution
of the hash codes with bitwise interaction for the nth sam-
ple. zin is the ith column of the interacted node features
Zn and kdi ∈ RK×K represents the learnable decoding
matrix from the interaction space to the bit space. In order to
enable the end-to-end learning of the GraphMiner and the
deep hashing model, we utilize K fully-connected layers in
parallel as the decoding matrices, and then add output from
all branches together to obtain the robust binary descriptors.

4.5 Training Details

Similar to the differentiable search for bitwise interaction
mining, we expect the adjacency weight matrix to be reliable
and sparse. Therefore, we modify J4 shown in (9) as follows
to adapt to the dynamic bitwise interaction:

J4 = −
N∑
n=1

K∑
i=1

K∑
j=1

||Ân,ij − 0.5||22 (14)

By leveraging the overall objective function shown in (10),
parameters in the deep hashing model and the GraphMiner
are optimized jointly. During each epoch of dynamic bitwise
interaction mining, we update the learnable parameters of
GraphMiner in two stages. First, we learn the encoding
matrix and the adjacency mining matrix simultaneously
where the interacted node features are obtained via (12).
In the second stage, we replace the normalized adjacency
weight matrix with the adjacency matrix for interacted node
feature acquisition to optimize the state update matrix and
decoding matrix, which is written as follows:

Zn = σ((I + Φn)HnWg) (15)

where Φn is the adjacency matrix of the nth sample. The
element in the ith row and jth column of Φn equals to
one if the corresponding element of Ân is among top-k and
equals to zero otherwise. Moreover, we also leverage (15) to
acquire binary descriptors with dynamic bitwise interaction
in inference.

5 EXPERIMENTS

In this section, we conducted comprehensive experiments
to evaluate our method on CIFAR-10 [31], NUS-WIDE [15]
and ImageNet-100 [16] for image retrieval, on Brown [8] for
patch matching and on HPatches [4] for patch verification,
image matching and patch retrieval. We first describe the
implementation details and introduce the applied datasets.
Secondly, we validate the effectiveness of bitwise interac-
tion, reinforcement learning strategy and the differentiable
search method, and further investigate the influence of the
GCN based dynamic bitwise interaction mining via the
ablation study. Thirdly, we compare our method with the
state-of-the-art unsupervised binary descriptors to show
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the superiority, and combine GraphBit, GraphBit+ and D-
GraphBit with other unsupervised binary code learning
techniques to further enhance the vanilla model. Finally, we
compare the deployment efficiency and the training cost of
different descriptor learning methods.

5.1 Datasets and Implementation Details

We first introduce the datasets we carried out experiments
on and corresponding data preprocessing techniques:

CIFAR-10: The CIFAR-10 dataset includes 60, 000 im-
ages of size 32×32, which is categorized into 10 classes. We
randomly selected 1, 0000 images (1, 000 images per class)
for the query set, and the rest 50, 000 images for the training
set and also the retrieval database. Four pixels were padded
on each side of the images which were cropped into the size
of 32× 32 randomly with normalization.

NUS-WIDE: The NUS-WIDE dataset contains 269, 648
images collected from Flicker with 81 manually classes. Two
images are regarded as positive if they share at least one
label and are negative otherwise. We only used the 21 most
frequent classes, resulting in a total of 166, 047 images. We
randomly chose 2, 100 images (100 images per class) as the
query set and regarded the rest as the training set and the
retrieval database. The images were warped and normalized
to 64× 64 before forward propagation.

ImageNet-100: ImageNet (ILSVRC12) contains approxi-
mately 1.2 million training and 50K validation images from
1, 000 categories, which is much more challenging because
of its large scale and high diversity. ImageNet-100 dataset
was collected by [11], where 100 classes were randomly
selected from original ImageNet. Images in the training and
validation sets of the selected classes were leveraged as the
database and queries respectively. Meanwhile, 100 images
per category were randomly chosen from the database to be
the training samples. For fair comparison, we employed the
same class selection and data split as those in [11]. Followed
by data augmentation of bias subtraction applied in CIFAR-
10, a 224 × 224 region was randomly cropped for training
from the resized image whose shorter side was 256. For
inference, we employed the 224× 224 center crop.

Brown: Brown contains three subsets including Liberty,
Notre Dame and Yosemite. Each of them consists of over
400K patches for training and 100K test pairs. Among the
test pairs, half of them are positive and the rest are negative.
We took one subset as the training set and others as the test
sets, leading to six training-test combinations. Following the
evaluation protocol of [8], we report the false positive rate
at 95% recall (FPR95).

HPatches: HPatches provides visual analysis tasks in-
cluding patch verification, image matching and patch re-
trieval. HPatches consists of 116 sequences in total, splitting
into 57 with photometric changes and 59 with significant
geometric deformations. Different levels of geometrical per-
turbations imposed on the images form the EASY, HARD
and TOUGH patch groups. Following [4], we leveraged the
mean average precision (mAP) as the evaluation metric.

We utilized VGG16 [50] as our deep hashing model,
where the last softmax layer was substituted by a fully-
connected layer for feature dimension reduction. We used
a sigmoid function to normalize the real-valued feature into
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Figure 6. (a) shows the mAP variation of GraphBit with different interac-
tion density, and (b) demonstrates that in GraphBit+ and D-GraphBit re-
spectively. (c) illustrates the performance change of GraphBit, GraphBit+
and D-GraphBit with different β, and (d) depicts the mAP for GraphBit+
and D-GraphBit w.r.t. γ in the overall objective. The binary descriptor
length was set to 32.

[0, 1] before binarization to represent the probability of being
one for each bit. The deep hashing model optimization
and the bitwise interaction mining were alternatively im-
plemented in each round, where we leveraged the Adam
optimizer [29] with the batchsize 128. For the parameter
update of the deep hashing model, the learning rate started
from 0.001, 0.003, 0.01, 0.01 and 0.005 for CIFAR-10, NUS-
WIDE, ImageNet-100K, Brown and HPatches respectively.
The learning rate decayed twice at 50% and 80% of total
epochs by multiplying 0.1, and the number of training
epochs in each round for the above datasets were set as
10, 20, 20, 10 and 20 respectively. Rigid sign function was
applied for feature binarization in order to prevent time-
consuming sampling in inference.

For GraphBit, the policy network consisted of three con-
volutional layers, followed by two fully-connected layers
and two deconvolutional layers. The hyperparameters α
and β in (5) were set as 0.4 and 0.2 respectively. The state
matrix was randomly initialized by a sparse matrix whose
non-zero elements were one in order to avoid trivial action
probability matrix Wt. For initialization, we generated a
random number from the uniform distribution between zero
and one for each element in the state matrix. We assigned
the ceil(0.01K2) elements with the largest random number
to one and remained others being zero, where ceil(x) means
the smallest integer larger than x. For the action selection
strategy in the policy gradient, we gradually increased the
parameters k1 and k2 during the iterations in the following
strategy: k1 = min{0.08T, 0.8} and k2 = min{ T

10K2 ,
1
K2 },

where T means the index of rounds during the searching
process and K represents the feature dimension. We only
selected one combination of states, actions and rewards
in the sample sequence to accelerate training. The total
rounds for alternative bitwise interaction mining and deep
hashing model learning were set to 10 with the learning
rate 0.001. In each round, the policy networks were trained
until reaching the maximal step ceil(5 ×N/128) or reward
convergence, where N demonstrates the number of training
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Table 1
MAP (%) on CIFAR-10, NUS-WIDE and ImageNet-100 for image retrieval with binary descriptors in different code lengths, where the bitwise

interaction types and the search methods were varied.

Bitwise Interaction Search Methods
CIFAR-10 NUS-WIDE ImageNet-100

16 bit 32 bit 64 bit 16 bit 32 bit 64 bit 16 bit 32 bit 64 bit
None − 27.95 32.77 36.16 44.15 45.50 49.17 9.70 11.02 15.67

Fixed
Random 30.16 33.25 37.57 45.01 45.66 49.35 9.89 12.05 16.36

Reinforcement Learning 32.15 36.74 39.90 48.41 48.77 50.62 13.54 22.89 27.71

Differentiable Search 31.68 36.25 39.51 48.18 49.20 50.57 13.31 22.66 27.50

Dynamic
Random 35.06 41.26 47.85 56.86 61.01 63.31 13.66 18.90 21.74

Graph Neural Networks 41.02 48.79 50.02 64.25 65.24 67.03 20.55 32.25 35.93

samples. Reward convergence was achieved if the difference
of average reward across five consecutive 100 steps was less
than 1e-4.

For GraphBit+, the number of rounds for iterative bit-
wise interaction mining and deep hashing model learning
was set to 10. The adjacency weights and interaction weights
were alternatively optimized for 10 epochs in each round,
where α, β and γ in the overall loss were assigned to
0.4, 0.2 and 0.1 respectively with the learning rate 0.001.
We sampled the binary descriptors with bitwise interaction
according to (8) and (6) of the manuscript when training
the adjacency weights and interaction weights respectively.
For the discretization of adjacency matrix Φ, we selected
the top-K

2

10 elements in adjacency weight matrix for bitwise
interaction assignment.

For D-GraphBit, we applied K fully-connected layers
in parallel for the encoder and decoder of GraphMiner
respectively. The optimizer and batchsize of GraphMiner
were set as the same as those of the deep hashing model, so
that the GraphMiner and the deep hashing model could be
trained jointly. The number of rounds for dynamic bitwise
interaction mining and deep hashing mode optimization
was assigned to 10. During each epoch of GraphMiner
training, the encoding matrix and the adjacency mining
matrix were optimized with the interacted node features
obtained from (12) for 10 epochs in the first stage, and the
state update matrix and the decoding matrix were updated
with the interacted node features acquired via (15) for 10
epochs in the second stage. The learning rate was constantly
set to 0.001. The discretization of adjacency matrix and the
hyperpamaters in the overall loss shared the same settings
of GraphBit+ except that β equaled to 0.1.

5.2 Ablation Study

In this section, we analyze the effect of bit ambiguity elim-
ination and the policy gradient search strategy in Graph-
Bit, show the effectiveness of the differentiable search in
GraphBit+, and demonstrate the superiority of GCN based
dynamic bitwise interaction mining in D-GraphBit via the
ablation study. Since reducing the uncertainty of the bi-
nary descriptors according to the bitwise interaction elim-
inates the ambiguity, we conducted extensive experiments
by varying the bitwise interaction types and the search
methods on CIFAR-10, NUS-WIDE and ImageNet-100 with
binary descriptors in different code lengths. Meanwhile, we
investigated the impact of the bitwise interaction density on
the performance by changing the maximum of k1 and k2
in action sampling for Graphbit, and varied the k value of

top-k in adjacency matrix discretization for GraphBit+ and
D-GraphBit. Finally, we analyze the influence of the bitwise
priors on mAP by varying the hyperparameter β and study
performance variation with edge entropy in the interaction
graph by changing γ in the overall objectives.

Performance w.r.t. the bitwise interaction types: Table
1 illustrates the mean average precision (mAP) w.r.t. dif-
ferent bitwise interaction types and search methods. The
implementations of no bitwise interaction were maximiz-
ing mutual information between the input images and the
learned binary descriptors without bitwise interaction. By
comparing the results in the 3rd, 5th, 6th and 8th rows of
Table 1, we conclude that the bitwise interaction signifi-
cantly enhances the binary descriptors in various lengths
across all three datasets. Moreover, the dynamic bitwise
interaction achieves the optimal ambiguity elimination for
different input samples, as the reliability of the hash codes
is further strengthened.

Performance w.r.t. the search methods: In order to
demonstrate the effectiveness of reinforcement learning and
differentiable search for fixed bitwise interaction learning
and GCN based dynamic bitwise interaction search, we also
mined the fixed and dynamic bitwise interaction with ran-
dom search. By observing the results from the 4th to the 6th
rows of Table 1, we know that the efficiency of fixed bitwise
interaction search is improved by our policy gradient and
differentiable search methods. Without the discretization
errors in bitwise interaction search, reinforcement learning
slightly outperforms the differentiable search at the cost of
lower training efficiency. Comparing the results in the 7th
and 8th rows of Table 1, we draw the conclusion that the
presented search strategy via the graph neural networks is
highly effective as it outperforms random search by a large
margin.

Performance w.r.t. the bitwise interaction density: The
bitwise interaction density is defined as the L1 norm of the
adjacency matrix divided by the number of elements, where
higher density means more bitwise interaction. Figure 1(a)
demonstrates the mAP variation and the corresponding
bitwise interaction density for 32-bit binary descriptors ob-
tained by GraphBit, where the horizontal axis depicts the
maximum for k1 or k2 as we gradually increased them
according to the implementation details. Meanwhile, the
bitwise interaction density in GraphBit+ and D-GraphBit
can be controlled by the k value of top-k in adjacency
matrix discretization, and the resulted mAP is illustrated
in Figure 1(b). For reinforcement learning based search,
smaller k1 and k2 maximum in action sampling lead to high
density. Large k of top-k in adjacency matrix discretization
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Figure 7. Comparison of Precision/Recall curves on the CIFAR-10 dataset under varying binary lengths (a) 16 bits, (b) 32 bits and (c) 64 bits with
the state-of-the-art unsupervised binary descriptors.

Table 2
MAP (%) of top 1,000 returned images with different unsupervised binary descriptors on CIFAR-10, NUS-WIDE and ImageNet-100.

Category Method
CIFAR-10 NUS-WIDE ImageNet-100

16 bit 32 bit 64 bit 16 bit 32 bit 64 bit 16 bit 32 bit 64 bit

Hand-crafted
LSH 12.55 13.76 15.07 20.49 25.58 28.50 − − −

PCA-ITQ 15.67 16.20 16.64 30.23 30.52 31.63 8.35 9.12 9.33

Unsupervised
Learning

DeepBit 19.43 24.86 27.73 35.75 39.76 41.25 8.27 9.45 10.10

DBD-MQ 21.53 26.50 31.85 37.12 39.98 42.15 9.33 10.01 11.76

SADH 37.60 34.00 30.30 60.14 57.99 56.33 − − −
DVB 35.30 37.20 39.60 55.40 56.20 59.50 − − −

UDBD 32.24 36.17 39.60 52.30 57.90 59.80 − − −
GraphBit 32.15 36.74 39.90 48.41 48.77 50.62 13.54 22.89 27.71

GraphBit+ 31.68 36.25 39.51 48.18 49.20 50.57 13.31 22.66 27.50

D-GraphBit 41.02 48.79 50.02 64.25 65.24 67.03 20.55 32.25 35.93

GreedyHash 44.80 47.20 50.10 60.92 65.33 69.53 30.44 39.87 47.42

GreedyHash+GraphBit 48.64 53.35 62.02 68.28 69.71 70.45 33.68 46.74 56.15

GreedyHash+GraphBit+ 47.89 52.74 61.09 68.17 70.14 70.76 33.04 46.57 55.79

GreedyHash+D-GraphBit 54.10 59.54 63.75 71.73 72.92 74.07 42.22 57.52 61.61

also increases the interaction density for GraphBit+ and
D-GraphBit. The influence of density for fixed and dy-
namic bitwise interaction is similar, where medium density
achieves the best performance. Low density fails to pro-
vide sufficient bitwise interaction for ambiguity elimination
while high density connects bits with weak correlation, and
both of them degrade the performance.

Performance w.r.t. the importance of bitwise priors:
Figure 1(c) depicts the performance of hash codes in 32
bits with varying β. The hyperparameter β in the overall
objectives controls the importance of priors provided by
mined bitwise interaction on the learned binary code dis-
tribution, where smaller β shows that the bitwise priors
affect the binary descriptors more significantly due to the
less regularization. Figure 1(c) indicates that medium β
utilizes bitwise interaction optimally, where small β ignores
the knowledge obtained from the input images and large β
fails to impose affective priors to eliminate ambiguity.

Performance w.r.t. edge entropy in the graph: Large γ in
the overall objectives of GraphBit+ and D-GraphBit enlarges
the contrast of adjacency weights, which enforces the mined
bitwise interaction to be very reliable with low Shannon
entropy of edges. In order to investigate the performance
variation with the edge entropy in the interaction graph,
we changed the hyperparameter γ for GraphBit+ and D-
GraphBit where the results are demonstrated in Figure 1(d).
Large γ only increases the adjacency weight of the most
reliable interaction and remains others to be similarly low,
while small γ fails to mine reliable interaction due to the

insufficient contrast of adjacency weights.

5.3 Comparison with the State-of-the-art Methods
In this section, we compare the proposed GraphBit, Graph-
Bit+ and D-GraphBit with the hand-crafted binary descrip-
tors including SH [45], BRISK [32], BRIEF [10], ORB [44],
LSH [2] and PCA-ITQ [23], the unsupervised binary descrip-
tors including DH [20], DeepBit [34], DBD-MQ [18], SADH
[47], BinGAN [64], BGAN+ [51], UDBD [61], DVB [48] and
GreedyHash [53]. For reference, we listed the performance
of real-valued features SIFT [37] and RootSIFT [3], and the
supervised binary descriptors including LDAHash [52], D-
BRIEF [55], BinBoost [56] and RFD [21]. The performance
of the baseline methods was obtained by copying from the
referenced paper or re-implementation.

Comparison on CIFAR-10, NUS-WIDE and ImageNet-
100: Table 2 illustrates the mAP of different binary descrip-
tors on CIFAR-10, NUS-WIDE and ImageNet-100 for image
retrieval. Figure 7 demonstrates the precision/recall (PR)
curve for various hash codes on CIFAR-10. Although DBD-
MQ applied the multi-quantization to learn discriminative
binary descriptors, it failed to utilize the bitwise interaction
for ambiguity elimination that led to weak robustness. On
the contrary, our GraphBit and GraphBit+ mine the bitwise
interaction and then adopt the bitwise priors to enhance
the reliability of binary codes. As a result, we improve the
performance by a sizable margin especially on the largescale
ImageNet that faces the challenge of high diversity. More-
over, the fixed bitwise interaction cannot achieve optimal for
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Figure 8. Comparison of ROC curves on the Brown dataset with several binary descriptors, where six train-test combinations were adopted.

Table 3
Comparison of 95% error rates (FPR95) on the Brown dataset with the state-of-the-art binary descriptors, where six train-test combinations were
applied. Supervised binary descriptors include LDAHash, D-BRIEF, BinBoost and RFD, binary codes obtained without label information contains

BRISK, BRIEF, DeepBit, DBD-MQ, BinGAN, BGAN+ and UDBD. The real-valued feature SIFT is provided for reference.

Train Yosemite Yosemite Notre Dame Notre Dame Liberty Liberty Average
Test Notre Dame Liberty Yosemite Liberty Notre Dame Yosemite FPR95
SIFT (128 Byte) 28.09 36.27 29.15 36.27 28.09 29.15 31.17

LDAHash (16 Byte) 51.58 49.66 52.95 49.66 51.58 52.95 51.40

D-BRIEF(4 Byte) 43.96 53.39 46.22 51.30 43.10 47.29 47.54

BinBoost(8 Byte) 14.54 21.67 18.96 20.49 16.90 22.88 19.24

RFD (50-70 Byte) 11.68 19.40 14.50 19.35 13.23 16.99 15.86

BRISK (64 Byte) 74.88 79.36 73.21 79.36 74.88 73.21 75.81

BRIEF (32 Byte) 54.57 59.15 54.96 59.15 54.57 54.96 56.23

DeepBit (32 Byte) 29.60 34.41 63.68 32.06 26.66 57.61 40.67

DBD-MQ (32 Byte) 27.20 33.11 57.24 31.10 25.78 57.15 38.59

BinGAN (32 Byte) 16.88 26.08 40.80 25.76 27.84 47.64 30.76

BGAN+ (32 Byte) 32.14 36.11 60.24 40.51 30.26 54.64 42.12

UDBD (32 Byte) 14.61 20.79 52.60 18.99 11.76 52.17 28.49

GraphBit (32 Byte) 17.78 24.72 49.94 21.18 15.25 49.64 29.75

GraphBit+ (32 Byte) 18.43 25.27 49.96 21.32 15.63 49.17 29.96

D-GraphBit (32 Byte) 10.63 15.66 40.07 14.91 9.56 41.47 22.05

all input images due to the semantics variation, and the pre-
sented D-GraphBit learns the dynamic bitwise interaction
via the GCN based search strategy and further enhances
the performance. Since the greedy discrete optimization
proposed in GreedyHash [53] reduces the information loss
for hash codes, we integrate our GraphBit, GraphBit+ and
D-GraphBit with GreedyHash to further strengthen the dis-
crimination ability of the learned binary descriptors, which
outperform the vanilla GreedyHash by a large margin on all
three datasets.

Comparison on Brown: Table 3 illustrates the 95% error
rates (FPR95) of our method and the state-of-the-art binary
descriptors on the Brown dataset, and Figure 8 shows
ROC curves of all six train-test combinations. The length
of the binary descriptors for our methods was set as 256 in
the experiments on Brown. GraphBit and GraphBit+ learn

reliable binary codes with ambiguity elimination through
bitwise interaction mining, achieving an average FPR95
improvement of 8.84% and 8.63% compared with DBD-MQ.
D-GraphBit further enhances the performance by 7.70%
(22.05% vs. 29.75%) with the optimal bitwise interaction
mined dynamically. Moreover, GraphBit, GraphBit+ and D-
GraphBit obtain a lower average FPR95 compared to the
widely used real-valued SIFT features with much smaller
storage cost. As unsupervised methods, GraphBit, Graph-
Bit+ and D-GraphBit obtain better average performance
than the supervised LDAHash and D-BRIEF, which shows
their applicability in scenarios where label information is
difficult to collect.

Comparison on HPatches: We followed the standard
evaluation protocol [4] to report the performance of mAP on
the three visual analysis tasks including patch verification,
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image matching and patch retrieval. The goal of verification
is to classify whether two patches are matched or not.
Matching is performed by comparing patch sets between
the target and reference images, and retrieval aims to find
similar patches for query images. Table 4 shows the re-
sults, where GraphBit outperforms DeepBit by 3.92%, 1.17%
and 4.58% on each tested visual analysis task respectively.
D-GraphBit further enhances the performance by 5.77%,
5.01% and 5.33% on patch verification, image matching
and patch retrieval respectively, showing the effectiveness
of instruction from dynamic bitwise interaction. Moreover,
D-GraphBit outperforms the supervised binary descriptor
BinBoost without using any label information.

5.4 Deployment Efficiency and Training Cost
The storage cost and the inference latency depict the effi-
ciency of deploying the descriptor extraction model, and the
time to obtain a well-trained deep hashing model illustrates
the traiing cost. In order to show the efficiency in training
and deployment of our methods, we conducted experiments
to evaluate the storage cost, the inference latency and the
training cost on CIFAR-10 with 32-bit binary descriptors,
where Table 5 shows the results. Our hardware equipped
with a 2.8-GHz CPU and a 32G RAM, and we utilized a
GTX 1080 Ti GPU for acceleration. We evaluated the total
time of extracting one probe feature and retrieving from
gallery features as the inference latency, and the storage cost
for each probe feature was also investigated. Meanwhile,
The training cost is defined as the whole training time of
each method. Compared with the real-valued HOG features,
the proposed GraphBit (GraphBit+) and D-GraphBit both
save the storage cost by 75% and decrease the inference
latency by 52% and latency by 49% respectively. GraphBit+
reduces the training cost of GraphBit by 65% due to the
efficient differentiable search strategy for bitwise interaction
mining. The increase in inference latency for D-GraphBit
compared with GraphBit and GraphBit+ is acceptable since
the GraphMiner is very lightweight. Since the graph con-
volutional networks in the GraphMiner can be optimized
via gradient descent, the training cost of D-GraphBit is also
sizably decreased compared with GraphBit. Our GraphBit,
GraphBit+ and D-GraphBit only require negligible extra
inference latency than DeepBit, while obtain much higher
performance across different visual tasks.

GraphBit, GraphBit+ and D-GraphBit achieve differ-
ent trade-offs among accuracy, training cost and infer-
ence latency. D-GraphBit outperforms others with respect
to accuracy due to the dynamic bitwise interactions, and
slightly increase the inference latency resulted from the
lightweight GraphMiner. GraphBit+ significantly reduces
the training cost with slight accuracy degradation compared
with GraphBit. Therefore, users can choose the optimal one
for unsupervised binary descriptor learning based on the ac-
curacy requirement, training cost budget and the hardware
configurations for deployment.

6 CONCLUSION

In this paper, we have proposed an unsupervised deep
binary descriptor learning method called GraphBit for com-
pact image representation. Our GraphBit models binary

Table 4
MAP (%) of unsupervised binary codes on HPatches.

Method Verification Matching Retrieval
SIFT(128 Byte) 65.12 25.47 31.98

RootSIFT (128 Byte) 58.53 27.22 33.56

BinBoost (32 Byte) 66.67 14.77 22.45

BRIEF(32 Byte) 58.07 10.50 16.03

ORB (32 Byte) 60.15 15.32 18.85

DeepBit (32 Byte) 61.27 13.05 20.61

UDBD (32 Byte) 69.77 17.27 28.88

GraphBit (32 Byte) 65.19 14.22 25.19

GraphBit+ (32 Byte) 66.01 13.37 24.32

D-GraphBit (32 Byte) 70.96 19.23 30.52

Table 5
Comparison of the storage cost, the inference latency and the training

cost accross different descriptor extraction models.
Method Storage Cost Inference Latency Training Cost

HOG 16 Byte 42.2 ms -
DeepBit 4 Byte 20.2 ms 1.88h

GreedyHash 4 Byte 24.7 ms 2.52h
GraphBit 4 Byte 20.4 ms 5.73h

GraphBit+ 4 Byte 20.4 ms 2.02h
D-GraphBit 4 Byte 21.6 ms 2.05h

codes in binomial distributions and maximizes the mutual
information with the observed inputs and the related bits
to reduce the uncertainty. Moreover, GraphBit mines the
bitwise interaction through deep reinforcement learning to
enhance the reliability of the ambiguous bits. To reduce
the heavy training cost caused by reinforcement learning,
we have further presented GraphBit+ that leverages dif-
ferentiable search strategy for bitwise interaction mining.
We have also proposed D-GraphBit that learns dynamic
bitwise interaction for each instance via the GCN based
GraphMiner, so that the dynamic bitwise interaction pro-
vides optimal instruction to eliminate the binary descriptor
ambiguity for each input. Extensive experimental results
have demonstrated the effectiveness and efficiency of the
proposed method, and the mined bitwise interaction in
GraphBit, GraphBit+ and D-GraphBit can also be integrated
with other unsupervised binary descriptors to further en-
hance the vanilla model.
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