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Abstract— In this paper, we propose a rotation-invariant local
binary descriptor (RI-LBD) learning method for visual recog-
nition. Compared with hand-crafted local binary descriptors,
such as local binary pattern and its variants, which require
strong prior knowledge, local binary feature learning methods are
more efficient and data-adaptive. Unlike existing learning-based
local binary descriptors, such as compact binary face descriptor
and simultaneous local binary feature learning and encoding,
which are susceptible to rotations, our RI-LBD first categorizes
each local patch into a rotational binary pattern (RBP), and
then jointly learns the orientation for each pattern and the
projection matrix to obtain RI-LBDs. As all the rotation variants
of a patch belong to the same RBP, they are rotated into the
same orientation and projected into the same binary descriptor.
Then, we construct a codebook by a clustering method on the
learned binary codes, and obtain a histogram feature for each
image as the final representation. In order to exploit higher
order statistical information, we extend our RI-LBD to the triple
rotation-invariant co-occurrence local binary descriptor (TRICo-
LBD) learning method, which learns a triple co-occurrence
binary code for each local patch. Extensive experimental results
on four different visual recognition tasks, including image patch
matching, texture classification, face recognition, and scene clas-
sification, show that our RI-LBD and TRICo-LBD outperform
most existing local descriptors.

Index Terms— Rotation invariance, binary descriptor, feature
learning, co-occurrence feature.

I. INTRODUCTION

EXTRACTING distinctive features is one of the most
active issues in computer vision which is widely applica-

ble in many applications, e.g. face recognition [1]–[5], texture
classification [6]–[8], object and scene recognition [9], [10],
3D reconstruction and many others. High quality representa-
tion and low computational cost are two essential properties
for an effective feature descriptor. On one hand, it is cru-
cial for a feature descriptor to be discriminative and robust,
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as real-world applications usually suffer from large intra-
class variations. On the other hand, large amount of data and
mobile devices with limited computational capabilities require
efficient feature descriptors, which have low memory cost and
high computational speed.

Over the past decade, local binary features have aroused
extensive attention due to their robustness and efficiency, such
as binary robust independent elementary feature (BRIEF) [11],
binary robust invariant scalable keypoint (BRISK) [12],
oriented FAST and rotated BRIEF (ORB) [13], fast retina
keypoint (FREAK) [14], and LBP [1], [6] as well as its vari-
ants [10], [15]–[19]. Binary features deliver strong robustness
over local changes and show high computational efficiency
by substituting the Euclidean distance with the Hamming
distance. However, most local binary features are hand-crafted,
which require strong prior knowledge and are heuristic.

More recently, several learning-based local binary descrip-
tors have been proposed to address the limitation by
directly learning hash filters to project image patches into
binary codes [2], [20]. Compared with hand-crafted methods,
the learned binary codes deliver more properties, such as
compact, energy-saving and evenly-distributed, which leads
to stronger discriminative power. Moreover, learning-based
local binary descriptors are more data-adaptive. However,
these learning-based methods are sensitive to rotations, which
are not applicable to databases with large rotation variations,
such as texture classification, misaligned face recognition and
scene classification, or to some real applications with unknown
rotations in testing. To address the limitation, we propose a
rotation-invariant local binary descriptor (RI-LBD) by jointly
learning orientations for local patches and hash functions for
feature projection. Fig. 1 illustrates the pipeline of our RI-LBD
approach. Unlike existing local binary descriptor learning
methods, our RI-LBD first classifies each local patch into a
rotational binary pattern (RBP), and then jointly learns the
rotational function for each pattern and the projection matrix in
an unsupervised manner, where the rotational variations of an
O-PDV are rotated into the same pattern. Then, we perform a
clustering on the learned binary codes to construct a codebook,
and extract a histogram feature with the codebook as the final
representation of each image. As RI-LBD learns each feature
from a single local patch, the higher order statistical infor-
mation cannot be well exploited. To address this, we present
a triple rotation-invariant co-occurrence local binary descrip-
tor (TRICo-LBD) learning method, where triple adjacent
O-PDVs are utilized to describe a single local region to capture
the correlation among three co-occurred features. Extensive
experimental results on four different visual recognition tasks
including image patch matching, texture classification, face
recognition and scene classification show that our RI-LBD and

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



DUAN et al.: LEARNING RI-LBD 3637

Fig. 1. The flowchart of our RI-LBD approach. In the training procedure,
we first extract the ordered pixel difference vectors (O-PDV) for each
training image, and learn the rotational function ψ for each rotational binary
pattern (RBP) and the projection matrix W jointly in an unsupervised manner,
so that the rotation variants of a local patch are mapped into the same binary
codes. Then, we learn a codebook by clustering for feature encoding. In the
testing procedure, we first extract O-PDVs for each test image, which are
then rotated with the learned rotational function and projected into rotation-
invariant binary descriptors with the projection matrix. Lastly, we construct
a histogram feature from the binary codes with the codebook as the final
representation.

TRICo-LBD are of wide applicability and outperform most
existing state-of-the-art local descriptors.

II. RELATED WORK

In this section, we briefly review three related topics:
1) binary feature descriptors, 2) feature learning, and
3) co-occurrence features.

A. Binary Feature Descriptors

Recently, binary feature descriptors have aroused increas-
ing interest due to their robustness and efficiency. Earlier
works include BRIEF [11], BRISK [12], ORB [13] and
FREAK [14]. BRIEF directly compares the intensities of
pairs of points to calculate binary vectors, which are fast
to build and match. BRISK relies on a circular sampling
pattern to achieve robustness. ORB obtains scale and orien-
tation invariance by employing scale pyramids and orienta-
tion operators based on BRIEF. FREAK applies the retinal
sampling grid for fast matching inspired by the human visual
system, retina. However, these methods are susceptible to
noise and transformation because only raw intensity compar-
isons are utilized. To address the limitation, several learning-
based methods [21]–[25] have been proposed in recent years.
For example, Trzcinski et al. presented BinBoost [23] by
applying boosting for learning hash functions to obtain com-
pact binary descriptors. They also proposed D-BRIEF [22]
which learns discriminative projections by encoding similarity
relationships. Balntas et al. presented binary online learned
descriptor (BOLD) [25] which applies the LDA criterion by
adapting the binary tests to each patch.

B. Feature Learning

In recent years, there has been great success of feature
learning in visual analysis. A number of feature learning

methods have been proposed in the literature [3], [26]–[29],
and representative methods include restricted Boltzman
machine [26], local quantized pattern (LQP) [29], discrim-
inant face descriptor (DFD) [28], convolutional deep belief
networks [27] and deep hidden identity features (DeepID) [3].
These learning-based features have achieved impressive per-
formance in various computer vision tasks, yet convolutional
neural networks [3], [27] outperform most of the others.
However, convolutional neural networks require large number
of labeled samples for feature learning because extensive para-
meters are usually required to estimate. Yet large amounts of
labeled data are hard to collect for some practical applications,
such as cross-modality face recognition, texture classification
and facial age estimation. Therefore, several unsupervised
local feature learning methods have been presented [2], [20].
Compact binary face descriptor (CBFD) [2] learns a hashing
filter to project each local patch into compact binary codes
in an unsupervised manner. Simultaneous local binary feature
learning and encoding (SLBFLE) [20] jointly learns the binary
feature and the codebook simultaneously with a one-stage pro-
cedure. However, these methods are susceptible to rotations,
which limits their performance and applications.

C. Co-Occurrence Features

Compared with individual occurrence features, co-
occurrence features capture the relationship between
the related features and provide higher order statistical
information. There are several co-occurrence features
introduced in recent years, which can be categorized into two
classes: holistic co-occurrence features [30], [31] and local
co-occurrence features [10], [32]–[35]. Holistic co-occurrence
features describe the relationship between visual semantic
concepts, such as scenes and objects. For example, Rasiwasia
and Vasconcelos [30] exploited the co-occurred natural scenes
to model contextual relationships. Yuan et al. [31] mined
co-occurrence patterns and integrated them through a boosting
procedure considering both conjunction and disjunction forms.
Instead of capturing related semantic spaces on the whole
image, local co-occurrence features are extracted within
adjacent local patches. For example, Ito et al. [32] proposed
co-occurred heterogeneous features to describe various
aspects of objects. Yang et al. [33] calculated pairwise
statistics between ingredients to exploit spatial relationships.
Nosaka et al. [34] introduced a co-occurrence adjacent local
binary pattern (CoALBP) to exploit spatial relations among
the adjacent LBPs. However, all the aforementioned local co-
occurrence features are sensitive to rotations. More recently,
several rotation-invariant local co-occurrence features have
been proposed. Qi et al. [10] presented a pairwise rotation
invariant co-occurrence local binary pattern (PRICoLBP)
by using a pairwise transform invariance principle. They
also proposed a globally rotation invariant multi-scale co-
occurrence local binary pattern (MCLBP) by capturing the
correlations among different scales. Unlike most existing
co-occurrence features which are hand-crafted, we directly
learn triple rotation-invariant co-occurrence local binary
descriptors from raw pixels in this work.
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Fig. 2. An example of obtaining rotation invariance, where all the rotational variations of an O-PDV are rotated to the same benchmark orientation with the
minimum energy of RBP.

III. PROPOSED APPROACH

In this section, we first present the proposed RI-LBD
method, and then introduce the extended TRICo-LBD method.
Lastly, we propose the feature representation using RI-LBD
and TRICo-LBD.

A. RI-LBD Feature Learning

Rotation invariance is one of the most important contribu-
tions of the proposed RI-LBD. As the procedure of obtaining
rotation invariance is relatively complicated, we first give
an example for better illustration. The key idea is to rotate
all the rotational variations of an O-PDV to the benchmark
orientation, which minimizes the energy of RBP. Fig. 2 illus-
trates an example of obtaining rotation invariance. For each
input image patch, we first compute its O-PDV. Then, through
the binarization, we can obtain its RBP which describes the
orientation of O-PDV. Finally, we rotate the O-PDV by θ to
the benchmark orientation, which minimizes the energy of the
corresponding RBP. As shown in Fig. 2, different rotational
variations of an O-PDV are rotated to the same benchmark
orientation.

In the following, we introduce the steps accordingly, which
include ordered pixel difference vector, rotational binary pat-
tern and rotation-invariant local binary feature learning.

1) Ordered Pixel Difference Vector: Firstly, we introduce
an ordered pixel difference vector (O-PDV) as the input
vector because it encodes lines and edges by measuring the
differences between pixels.1 Fig. 3 illustrates the approach
to extract O-PDV. Similar to pixel difference vector (PDV),
O-PDV calculates the differences between the central pixel and
its neighbouring pixels at first. However, they are concatenated
in order of scale and orientation, so that O-PDV is able to
represent the rotation of the image patch by separately shifting
the difference vector of each scale according to the angle. It is
easy to prove that the length of the vector in r -scale is 8 × r ,
and the total length of the O-PDV is d = 4 × R × (R + 1).

1The conventional pixel difference vector (PDV) aligns the differences
between central pixel and neighbouring pixels unordered, which cannot
represent the rotation of the image.

Fig. 3. An illustration of extracting an ordered pixel difference vector
(O-PDV) from the original image in our approach. Given any pixel in
the image, we first compute the differences between the central pixel and
the neighbouring pixels in each scale, respectively. Then, for each scale,
a difference vector is aligned clockwisely starting from the top-left. Lastly,
difference vectors of different scales are concatenated from small to large into
a longer vector, which becomes the O-PDV. For easy illustration, R is set as
2 in this figure.

Let X = [x1, x2, · · · , xN ] be the N samples of O-PDVs
from the training set. When there is a rotation on the image
patch, the pixels with the same radius can be seen to locate on
a circle and will move along the perimeter, which leads to a
corresponding rotation on each scale of O-PDV respectively as
aforementioned. With each patch orientation θ , we construct
the corresponding rotation matrix R(θ), which transforms the
original O-PDV into a new rotated O-PDV according to the
rotation on the image patch:

xθn = R(θ)xn. (1)

As R(θ) rotates each scale of O-PDV respectively, it is a
diagonal matrix with the rotation matrix for each scale Rr (θ) ∈
R

8r×8r as its diagonal:

R(θ) = diag(R1(θ), · · · ,RR(θ)). (2)

For each scale r , a one-bit circular shift corresponds to
an angle of θr = 2π/8r rotation. Specifically, if the degree
of rotation is not the multiple of θr , interpolation should be
used instead of simple circular shifts. As each image patch
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Fig. 4. An illustration of θr and θ̂r . The circle on the left is the original
patch, while the right represents the patch after rotation. We can see that
nr = 1 in this figure, so that θ = θr + θ̂r .

is small, values in each scale can be seen as located on a
circle. Therefore, we use two adjacent values in this scale
to interpolate the new value after the rotation. Given any
angle θ , we firstly calculate the times of one-bit circular shifts
nr and the remaining angle θ̂r :

θ = nrθr + θ̂r , (3)

where nr ∈ N and 0 ≤ θ̂r < θr . An illustration of the angle
decomposition is shown in Fig. 4.

Then, for the j th value in scale r of the new rotated
O-PDV, ( j + nr )mod(8 × r)th and ( j + nr + 1)mod (8 × r)th
values are the adjacent values in original O-PDV, where mod
is the operation to obtain the least positive remainder in integer
division.2 Therefore, these two values are used to interpolate
the new value, whose weights are 1 − θ̂r/θr and θ̂r/θr ,
respectively, and the representation of the rotation matrix for
scale r is as follows:

Rr,i j (θ) =

⎧
⎪⎨

⎪⎩

1 − θ̂r/θr , if i = ( j + nr )mod(8 × r),

θ̂r/θr , if i = ( j + nr + 1)mod(8 × r),

0, otherwise.

(4)

In order to make the learned binary features rotation-
invariant, all rotation variations of an O-PDV should be rotated
into the same orientation. Let xr

n,p be the pth number in scale
r of xn , and we define the energy of xn as follows, which is
highly related to the orientation of the O-PDV:

Ex(xn) =
R∑

r=1

8r∑

p=1

0.5 × (sgn(xr
n,p)+ 1)2(1−p)/r , (5)

where sgn(x) = 1 if x ≥ 0 and -1 otherwise. The binarization
is to overcome the noises in the O-PDV, and the weights are
designed to be the same for the same orientation of different
scales, as shown in Fig. 5.

2) Rotational Binary Pattern: We discretize the orienta-
tion as �θ = 2π/nθ . As there are nθ rotation variants of
each patch, we obtain nθ energies in total for each O-PDV
through (5). We use this nθ -dimensional energy vector to
describe the rotational information of the local patch. It is easy
to find that the angle between a local patch and its rotation
variants can be estimated through the circular shifts of the
energy vectors. In this paper, we fix nθ to 24 which is large

2If the result of mod operation equals to zero, we change it into 8 × r .

Fig. 5. An illustration of the weights to calculate the energy of O-PDV. The
weights are designed to be the same for all the scales when sharing the same
orientation.

Fig. 6. We binarize and reconstruct the O-PDV into the patch form, and
calculate the energy vector and its RBP. nθ is set as 8 for easy illustration.
When the local patch rotates 2π/8 clockwise, both the energy vector and RBP
shift accordingly, sharing the same angle.

enough for rotation invariance. Then, we study the changing
tendency of the energy vectors, and observe that the energies
in a vector tend to keep increasing or decreasing with only a
few extreme points. It is reasonable because most changes
of pixels are smooth in a small patch. In order to exploit
such information, we construct a 24-dimensional rotational
binary pattern (RBP) tn where its values equal to 1 if the
energy is increasing at the next orientation and 0 otherwise
with the circular assumption, and it is observed that over 90%
24-dimensional RBPs have less than or equal to four 0/1 bit-
wise shifts, which is called the uniform RBP.3

Similarly, we define the energy of RBP:

Et (tn) =
nθ∑

p=1

tn,p × 21−p, (6)

where tn,p is the pth value in RBP tn .
3) Rotation-Invariant Local Binary Feature Learning: As

Fig. 6 illustrates that O-PDV and its RBP share the same angle
under image rotation, we design a benchmark for rotational

3The number of bitwise shifts includes the changes between the last and
the first values. In order to remove the noises, we will manually shift a bit if
its both neighbours and at least one sub-neighbours are different from it.
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variations of an O-PDV which has the minimum energy of
its RBP, so that all rotational variants of an O-PDV share the
same benchmark O-PDV. In order to obtain rotation invariance,
an obvious idea is to rotate each O-PDV into the benchmark
O-PDV at first.

However, the benchmark O-PDVs extracted from the train-
ing set may not be able to map into ideal binary codes which
are compact and energy-saving. As the projection matrix
is learned from millions of patches, for a single patch the
benchmark orientation may not be the best option for good
binary codes. A better mapping can also be obtained with
the optimization of all the orientations. In order to exploit the
implicit relationship between the orientations and the mapping,
we take the benchmark O-PDVs as the initialization and design
a joint learning method by adding the energy of RBPs into the
objective function to obtain more data-adaptive orientations.
More specifically, we jointly learn a rotational function ψ
and mappings wk , where ψ provides a rotational angle for
each RBP, i.e. θn = ψ(tn). As over 90% RBPs are uniform,
the function ψ rotates each uniform RBP and its rotational
variants into the same orientation to minimize the objective
function, and simply applies the benchmark orientation to
those non-uniform ones.

Let bθn
kn = 0.5 × (sgn(wT

k xθn
n )+ 1), and we can rewrite the

objective function as follows:

min
wk,ψ

J = J1 + λ1 J2 + λ2 J3

=
N∑

n=1

Et (tψ(tn)
n )

+ λ1

N∑

n=1

K∑

k=1

||(bψ(tn)
kn − 0.5)− wT

k xψ(tn)
n ||2

− λ2

N∑

n=1

K∑

k=1

||bψ(tn)
kn − μk ||2, (7)

where N is the number of patches extracted from original
images, K is the length of each binary feature, μk is the
mean of the kth bit of all N input vectors, and λ1 and λ2
are parameters to balance the weight of different terms.

In (7), J1 is to minimize the energy of each rotated
O-PDV in order to obtain rotation-invariance, J2 is to reduce
the loss of the quantization between the original O-PDV and
the learned binary codes, and J3 is to maximize the variance
of the learned binary codes to make them more independent.

Let W = [w1,w2, · · · ,wK ] ∈ R
d×K be the projection

matrix, and each rotated O-PDV xψ(tn)
n is mapped into a binary

descriptor as follows:

bψ(tn)
n = 0.5 × (sgn(WT xψ(tn)

n )+ 1). (8)

Then, the objective function (7) can be rewritten as follows:

min
W,ψ

J = J1 + λ1 J2 + λ2 J3

= E(Xψ)+ λ1||(Bψ − 0.5)− WT Xψ ||2F
− λ2tr((Bψ − U)T (Bψ − U)), (9)

where Xψ = [xψ(t1)
1 , xψ(t2)

2 , · · · , xψ(tN )
N ] is the N samples of

rotated O-PDVs, E(Xψ) = ∑N
n=1 E(xψ(tn)

n ) is the total energy

of all rotated O-PDVs, Bψ = 0.5 × (sgn(WT Xψ + 1) ∈
{0, 1}K×N is the matrix of all binary codes, U ∈ R

K×N is
the mean matrix repeating the row vector of the mean of all
binary bits.

We relax the non-linear sgn(·) function as its signed magni-
tude [36], [37] as it makes (9) an NP-hard problem. Therefore,
J3 can be rewritten as follows:

J3 = tr(WT XψXT
ψW)− 2 × tr(WT XψMT W)

+ tr(WT MMT W), (10)

where M ∈ R
d×N consists of the mean vector of all O-PDVs

repeated in rows.
The objective function in (9) is not convex for W, Bψ and ψ

simultaneously. Therefore, we design the following iterative
optimization method to update each of them when others are
fixed:

Learning Bψ Fixing W and ψ: fixing W and ψ , we can
rewrite the objective function in (9) as follows:

min
Bψ

J (Bψ) = ||(Bψ − 0.5)− WT Xψ ||2F . (11)

The solution can be relaxed as follows since Bψ is a binary
matrix:

Bψ = 0.5 × (sgn(WT Xψ)+ 1). (12)

Learning W fixing Bψ and ψ: fixing Bψ and ψ , the objec-
tive function in (9) can be rewritten as follows:

min
W

J (W) = tr(WT QW)− 2 × λ1tr((Bψ − 0.5)XT
ψW)

subject to WT W = I, (13)

where

Q � λ1XψXT
ψ − λ2 × (XψXT

ψ − 2XψMT + MMT ). (14)

We utilize the gradient descent method [38] to solve the
objective function.

Learning ψ fixing W and Bψ : fixing W and Bψ , we update
ψ for different uniform RBPs sequentially. More specifically,
we first classify each RBP into a uniform pattern Cm or a non-
uniform pattern C. With the initialization of the benchmark
orientation, all rotational variations of an RBP belong to the
same pattern. Then, we sequentially learn an orientation for
each uniform pattern Cm . We fix the iteration step length to
�θ = 2π/24, and ψ can be updated as follows:

ψ(Cm) = argmin
∑

tn∈Cm

{J (ψ(tn)−�θ), J (ψ(tn)),

J (ψ(tn)+�θ)}. (15)

Algorithm 1 generalizes the procedure of our RI-LBD
method in detail.

B. TRICo-LBD Feature Learning

While the proposed RI-LBD method learns rotation-
invariant binary codes, each feature is learned from a
single local patch which loses higher order statistical infor-
mation. As co-occurrence features can exploit such informa-
tion and show stronger discriminative power, we present a



DUAN et al.: LEARNING RI-LBD 3641

Algorithm 1 RI-LBD

Fig. 7. An illustration of identifying co-occurrence O-PDVs based on the
original point xn and the orientation θn .

triple rotation-invariant co-occurrence local binary descrip-
tor (TRICo-LBD) learning method to address the limitation,
where triple adjacent O-PDVs are utilized to describe a single
local region.

Suppose [x0
n, x1

n, x2
n]co is an input feature of triple

co-occurrence O-PDVs, where x0
n is the O-PDV at the original

point and x1
n and x2

n are the target co-occurrence O-PDVs.
In order to obtain rotation-invariant co-occurrence features,
both global rotation invariance and local rotation invariance
are required.

Global rotation invariance claims that under any image
rotation, the same target points should be selected for a specific
local patch, which needs a unique identification method for the
targets. Let θb

n be the orientation of x0
n to minimize the energy

of its RBP, and then we identify the direction from x1
n and x2

n to
x0

n as θn and θn+π/2, in order to obtain more information form
the orthogonal aspect. Fig. 7 shows the method of identifying
co-occurrence O-PDVs. In order to make the positions of co-
occurrence O-PDVs on the grid, we discretize the orientation
as �θ = 2π/24, and select the distance between the target
O-PDVs and the original O-PDV as 3 pixels in infinite norm.

Fig. 8. An illustration of local rotation invariance. Given any orientation
θn for the original O-PDV x0

n , the target O-PDVs x1
n and x2

n share the same
orientation to maintain the correct relationship between the original O-PDV
and the target O-PDVs. As the original O-PDV is rotation-invariant with the
learned orientation, we can also yield the same triple co-occurrence feature
in spite of the rotations.

Local rotation invariance requires the same rotation angle
for all triple occurrence O-PDVs, as illustrated in Fig. 8.
Therefore, we share the learned orientation for each local patch
with all the triple co-occurrence O-PDVs and obtain rotation
invariance for the triple co-occurrence feature.

Similarly, the objective function of learning TRICo-LBD is
formulated:

min
Wc,ψ

G = J1(ψ)+
2∑

c=0

(λ1 J2(Wc, ψ) + λ2 J3(Wc, ψ))

= E(X0
ψ)+

2∑

c=0

(λ1||(Bc
ψ − 0.5)− WT

c Xc
ψ ||2F

− λ2tr((Bc
ψ − Uc)

T (Bc
ψ − Uc))), (16)

where Xc
ψ = [(xc

1)
ψ(t0

1), (xc
2)
ψ(t0

2), · · · , (xc
N )
ψ(t0

N )] is the N
samples of rotated co-occurrence O-PDVs, Bc

ψ is the matrix
of all co-occurrence binary codes, Uc is the mean matrix of
co-occurrence binary bits.

Similarly, we also use the iterative optimization method to
update each with the others fixed to learn Wc, ψ and Bc

ψ .
Learning Bc

ψ fixing Wc and ψ: fixing Wc and ψ ,
the objective function in (16) can be rewritten as follows:

min
Bc
ψ

J (Bψ) = ||(Bc
ψ − 0.5)− WT

c Xc
ψ ||2F . (17)

The solution can be relaxed as:

Bc
ψ = 0.5 × (sgn(WT

c Xc
ψ)+ 1). (18)

Learning Wc fixing Bc
ψ and ψ: fixing Bc

ψ and ψ , the objec-
tive function in (16) can be rewritten as follows:

min
Wc

J (Wc) = tr(WT
c QcWc)

− 2 × λ1tr((Bc
ψ − 0.5)(Xc

ψ)
T Wc)

subject to WT
c Wc = I, (19)
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Algorithm 2 TRICo-LBD

where

Qc � λ1Xc
ψ(X

c
ψ)

T − λ2 × (Xc
ψ(X

c
ψ)

T

− 2Xc
ψMT

c + McMT
c ). (20)

In (20), Mc represents the mean matrix of Xc repeated in
rows. We also utilize the gradient descent method to solve Wc.

Learning ψ fixing Wc and Bc
ψ : fixing W and Bc

ψ , we also
sequentially learn an orientation for each uniform pattern Cm :

ψ(Cm) = argmin
∑

tn∈Cm

{J (ψ(t0
n)−�θ), J (ψ(t0

n)),

J (ψ(t0
n)+�θ)}. (21)

Algorithm 2 generalizes the procedure of our TRICo-LBD
method in detail.

C. Feature Representation Based on RI-LBD and TRICo-LBD

For RI-LBD, we first rotate each O-PDV from the test set
to minimize the energy. Then, the rotated O-PDV is projected
into a low-dimensional binary vector using the projection
matrix W. With a codebook learned from the training set by an
unsupervised clustering method,4 all binary codes are repre-
sented as a histogram feature, which is the final representation.
Fig. 9 illustrates the approach of feature representation based
on RI-LBD.5

For TRICo-LBD, the orientation for each co-occurrence
O-PDV from the test set is determined by minimizing the
energy of the original O-PDV. Similarly, with the learned
projection matrices and the codebook, each test image is
finally represented as a histogram feature.

4We use K -means method to learn the dictionary for simplicity.
5The operation of division is only executed for the images with good

alignments, otherwise the image is managed as a whole.

Fig. 9. The flow-chart of feature representation approach based on RI-LBD.
We first divide each training image into several non-overlapped regions, and
jointly learn the rotational function ψ and the feature mapping W to project
each image patch into binary codes. Then, a codebook is learned for each
region. For each sample image, we first rotate each image patch with the
learned rotational function, and then utilize the learned projection matrix and
the codebook to obtain histogram feature for each block. Lastly, The histogram
features are concatenate into a longer feature for the final representation.

IV. DISCUSSION

A. Advantages of Joint Learning

In our work, we jointly learn the rotational function for each
RBP and the projection matrix in order to better exploit the
implicit relationship between the orientations and the projec-
tion matrix. Compared with the two-stage method which aligns
the orientation first and then learns the projection matrix, there
are two key reasons for the proposed joint learning method.
1) The benchmark orientation which minimizes the energy of
RBP is not robust in a small range. If we only consider the
pixels from a specific scale, the benchmark orientation for the
scale is fixed due to the observation of the uniform pattern
of LBP. However, these orientations from different scales are
similar but possibly different, which leads to an uncertainty
of the benchmark orientation for the local patch. Therefore,
the orientations which are close to the benchmark orientation
should be considered, and we need to learn for a better one.
2) The benchmark patches may not be able to be projected
into discriminative binary codes which are compact and energy
saving. As the projection matrix is learned from millions of
patches, for a single patch the benchmark orientation may not
be the best option for good binary codes; a better mapping can
also be obtained with the optimization of all the orientations.

B. Comparison of LBP and RBP

Both LBP [1] and RBP are binary patterns where most of
them are uniform, yet there are two main differences between
them. 1) LBP describes the pixels on a circle of radius from the
central pixel and the uniform pattern only exists on a specific
scale, while RBP represents the whole local patch. 2) Each
bit of LBP only represents a single pixel, while a RBP bit
contains the rotational information of the local patch.

C. Comparison of Canonical Direction and
Energy Minimization

Both canonical direction and the proposed energy min-
imization methods are effective approaches to obtain rota-
tion invariance, where RLBP [19] and SIFT [39] are two
conventional local feature methods with canonical direction.
RLBP defines the dominant direction through the index of the
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TABLE I

95% ERROR RATES (ERR) (%) COMPARED WITH THE STATE-OF-THE-ART BINARY DESCRIPTORS ON BROWN DATASET, WHERE BOOSTED SSC, BRISK,
ORB AND BRIEF ARE UNSUPERVISED BINARY FEATURE AND LDAHASH AND D-BRIEF ARE SUPERVISED. THE FAMOUS

REAL-VALUED FEATURE SIFT IS PROVIDED FOR REFERENCE

neighbour with the maximum difference between the central
pixel, and SIFT applies a more complicated procedure. In fact,
the proposed energy minimization approach can also be seen
as a simple canonical direction method, like RLBP. Instead of
simply taking the neighbour with the maximum difference as
the canonical direction which is susceptible to illumination,
the canonical direction of RI-LBD can be defined as the
orientation where pixels in the clockwise direction are smaller
than the central pixel and the ones in the counter-clockwise
direction are larger. Then, we rotate this canonical orientation
into the top left corner with the largest weight which gradually
descends clockwisely. Compared with SIFT which suffers
from heavy computational cost and works on a few detected
keypoints, the energy minimization method only needs vector
multiplications, which is more suitable for the dense sampling
situation.

V. EXPERIMENTS

We evaluate our RI-LBD and TRICo-LBD on four differ-
ent visual recognition tasks including image patch matching,
texture classification, face recognition and scene classification
to show the effectiveness of the proposed method.

For image patch matching, we used a single learned binary
vector to represent a image patch instead of a histogram
feature to directly show the efficiency of the learned binary
codes. For the other three applications, we compared our
method with two local binary feature representation methods
including LBP [1] and CBFD [2], where LBP is a widely-
used binary feature and CBFD is a state-of-the-art binary
code learning method. We also compared our methods with
the state-of-the-art rotation-invariant local binary descriptor
PRICoLBP [10] on texture classification and scene classifica-
tion. Moreover, in order to evaluate the effectiveness of joint
learning, we compared the two-stage learning method with
the proposed joint learning method in each dataset. The two-
stage scheme rotates each image patch to minimize its RBP
at first (as a preprocessing) and then learns or tests with the
rotated local patches. Without joint learning, it may lose the
implicit relationship between the orientation and the mapping.

A. Image Patch Matching

In this section, we evaluate the proposed RI-LBD on the
Brown dataset [41], which includes Liberty, Notre Dame and

Yosemite and each contains more than 400,000 image patches.
For each dataset, there are 20,000 training pairs and 10,000 test
pairs where half of them are matched pairs and the others are
mismatched pairs.

In the experiments, we simply employed a single binary
code to describe a image patch instead of the histogram
feature to evaluate the effectiveness of the learned binary
descriptor. More specifically, we applied a relatively large
R so that each O-PDV could cover a whole image patch,
and each image patch was projected into a binary code
as the feature representation. We compared the proposed
RI-LBD with several conventional features including real-
valued descriptor SIFT [39], unsupervised binary descriptors
Boosted SSC [40], BRIEF [11], ORB [13] and BRISK [12],
and supervised binary descriptors LDA-HASH [21] and
D-BRIEF [22]. Three parameters λ1, λ2 and binary code length
K were fixed to 0.001, 0.01 and 24. As the Brown dataset
suffers from small rotational variants, we simply learned the
rotational function ψ without initialization.

Table I shows the 95% error rates (ERR) of the Brown
dataset, and we can see that our RI-LBD achieves 54.47%
error rate when the recall rate is 95%. As an unsupervised
binary code learning method, the proposed RI-LBD outper-
forms all state-of-the-art unsupervised binary descriptors, with
over 10 times shorter binary code length. Also, it obtains
comparable results with the supervised method LDAHash with
more than 5 times smaller storage space.

B. Texture Classification

In this section, we evaluate the proposed RI-LBD and
TRICo-LBD on three widely used texture databases, includ-
ing the Brodatz album [42], the KTH-TIPS [43] dataset,
the CUReT [44] dataset and the Outex_TC12 dataset [45]. The
Brodatz album is a well-known benchmark dataset for texture
classification, which contains 111 classes with 9 images for
each class. We used 1 image in each class as the training set for
feature learning, 3 as the gallery set and 5 as the probe set. The
KTH-TIPS dataset contains 10 texture classes, and each class
consists of 81 samples which are captured under nine scales,
three different poses and three different illumination directions.
In each category, we utilized 10 samples as the training set,
40 as the gallery set and 31 as the probe set. For the CUReT
dataset, we used the same subset as [10], [46], [47] which
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TABLE II

ACCURACY (%) OF THE KTH-TIPS DATASET VERSUS
VARYING λ1 AND λ2

includes 61 classes with 92 images for each category, and 9 of
them were set as the training set, 46 of them as the gallery set
and 37 of them as the probe set. The Outex_TC12 dataset is
a popular benchmark for rotation invariance evaluation, which
includes 24 classes of textures, varying from illuminations and
rotations. Both Outex_TC12_000 and Outex_TC12_001 con-
tain 200 samples per category, where we utilized 10 samples as
the training set, 20 samples as the gallery set and 170 samples
as the probe set.

1) Parameter Analysis: In RI-LBD, each O-PDV was
mapped into a K -bit rotation-invariant binary descriptor with
the learned rotational function ψ and projection W, which
then encoded into histogram representation with the codebook.
We first tested the classification rate of KTH-TIPS with
random sampling, and then applied these parameters on KTH-
TIPS with another sampling as well as other experiments.
In our experiments, neighbourhood radius size R was set
as 3 to establish a 48-dimensional O-PDV for each pixel,
and we examined the classification accuracy with different
λ1 and λ2 by fixing the binary code length K as 20 and
the dictionary size as 10000. We also applied the whitened
PCA (WPCA) method to reduce the dimension of the feature
into 50 to reduce the redundancy, and we used the SVM
with RBF kernel for the texture classification. The preserved
dimension is relatively low due to the repetitive pattern of
the texture image. Tab. II shows the results versus λ1 and λ2 ,
and they were selected as 0.001 and 1, respectively. Moreover,
when the parameters λ1 and λ2 are very large, the approach
degenerates into the two-stage scheme, where the rotational
function ψ is useless in the situation. Through Tab. II we
can observe that the classification rate decreases when λ1 and
λ2 are relatively large, which illustrates the effectiveness of
joint learning. The direct comparison of the proposed joint
learning method and the two-stage scheme is presented in all
the following experiments.

Then, we tested the binary code length K with the dictionary
size fixed as 10,000, and Fig. 10 (a) shows that the best
result was obtained with the binary length set as 20. Similarly,
Fig. 10 (b) shows that the best dictionary size was 10,000 with
the binary code length fixed to 20.

For TRICo-LBD, λ1 and λ2 and the dictionary size are the
same as RI-LBD, and the code length for each co-occurred
O-PDV was 15 so that the total binary feature length K is 45.

Fig. 10. Classification rates (%) of the KTH-TIPS dataset versus different
(a) binary code length (bit) and (b) dictionary size.

TABLE III

TEXTURE CLASSIFICATION RESULTS (%) OF DIFFERENT METHODS ON

BRODATZ, KTH-TIPS AND CUReT DATABASES

2) Comparison With the State-of-the-Art Methods: Table III
tabulates the classification rates of the proposed RI-LBD and
the state-of-the-art methods. The methods for comparison are
selected from the recently published papers which followed
the same protocol for fair comparison. We can observe that
there are few methods which perform well on all the three
widely used texture databases, yet RI-LBD achieves the
best results on Brodatz album and KTH-TIPS database, and
obtains very competitive performance on CUReT database.
Moreover, the error rate is reduced to less than half on
KTH-TIPS dataset (from 1.6% to 0.7%), which is significant
improvement. RI-LBD outperforms all LBP variants such
as MSLBP, CoALBP, LBPV, LBPHF-S, LBPHF-S-M and
PRICoLBP because it is a learning-based method which is
more data-adaptive and delivers stronger discriminative power,
and overcomes some of the bag-of-words methods, which
proves its effectiveness. For TRICo-LBD, the performance is
a little higher than RI-LBD because it exploits higher order
co-occurred information. As texture images suffer from severe
repetitive patterns, the advantage of co-occurred information
is not significant.

Table IV shows the experimental results of different
local binary descriptors on Outex_TC12. Following [55],
we evaluated the average accuracy of Outex_TC12_000 and
Outex_TC12_001 under varying neighborhood sizes.
In Table IV, CLBP [48], CLBC [53], BRINT [54], LBPV [16]
and MRELBP [8] are the combined descriptors of LBP and
other complementary features, while the others are single
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TABLE IV

TEXTURE CLASSIFICATION RESULTS (%) OF DIFFERENT LOCAL
BINARY DESCRIPTORS ON OUTEX_TC12 (OUTEX_TC12_000

AND OUTEX_TC12_001) UNDER VARYING NEIGHBORHOOD

SIZES. THE RESULTS ARE THE AVERAGE SCORES OF

OUTEX_TC12_000 AND OUTEX_TC12_001

Fig. 11. Some classification examples of the Outex_TC12 dataset. All six
probe images are correctly matched for RI-LBD, while the ones of large
rotations are missed by CBFD.

local binary descriptors. We observe that the proposed
RI-LBD and TRICo-LBD outperform other single binary
descriptors, especially for more than 20% improvement on
accuracy compared with CBFD. CBFD is an effective local
binary descriptor learning method, which obtains nearly
100% classification rate for the part of probe images with
small rotations. However, the performance of CBFD suffers
from severe deterioration with larger rotations, because the
learned binary codes for the rotation variations of a local
patch are totally different. On the contrary, RI-LBD learns
the orientation for each local patch, where rotation variations
are rotated to the same orientation and achieve rotation
invariance. Fig. 11 shows some classification examples on
Outex_TC12. We can observe that the proposed RI-LBD
classifies the correct texture pattern even under large rotations.
We combined the proposed RI-LBD with LBP to conduct
a fair comparison with combined features, which obtains
outstanding performance.

In addition, we tested the VGG-16 [56] to evaluate deep
learning approaches by finetuning on the Outex_TC12 dataset,

TABLE V

CLASSIFICATION RATES (%) RI-LBD COMPARISON WITH DIFFERENT
METHODS ON THE ROTATED TEXTURE DATABASES

TABLE VI

FEATURE DIMENSION AND FEATURE EXTRACTION TIME (ms) AND OF

RI-LBD AND TRICo-LBD COMPARED WITH DIFFERENT

LOCAL BINARY FEATURES

which obtains an accuracy of 88.20%. Deep learning presents
stronger discriminative power compared with the proposed
RI-LBD and TRICo-LBD. However, as CNN features are
not robust to rotations, probe images with large rotations
are misclassified. Instead, the proposed methods are rotation-
invariant, which present better performance.

3) Rotation Invariance: In order to investigate the rotation
invariance of the proposed RI-LBD method, we added arbi-
trary rotation variations on Brodatz, KTH-TIPS and CUReT
to establish new rot-Brodatz, rot-KTH-TIPS and rot-CUReT
databases. We compared the proposed RI-LBD with LBP,
CBFD and PRICoLBP, and experimental results are shown
in Table V. We can see that both CBFD and RI-LBD perform
well on the original datasets as they only contain small natural
rotations. However, the classification rate of CBFD descends
heavily on rotated datasets, yet a relatively good performance
is still achieved by RI-LBD. The proposed RI-LBD achieves
comparable robustness to rotations with PRICoLBP, which
proves the effectiveness on rotation invariance of RI-LBD.

4) Computational Time: We designed an experiment on the
Outex_TC12 dataset to evaluate computational time, where
we set the dictionary sizes for RI-LBD and TRICo-LBD as
6000 and 10000, respectively. The dictionary sizes are set
relatively small because the contents of texture images are
simple and repetitive. Our hardware configuration comprises
of a 2.8-GHz CPU and a 15G RAM. Table VI shows the
feature dimension and feature extraction time of different
methods. We observe that the computational cost of the



3646 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 8, AUGUST 2017

proposed RI-LBD is comparable to other local binary features,
and TRICo-LBD is more time consuming to achieve better
performance. Though, the feature dimension can be further
reduced by applying WPCA, and the computational time is
still acceptable.

C. Face Recognition

We compare our RI-LBD and TRICo-LBD methods with
several state-of-the-art descriptors on two widely used face
databases including LFW [57] and FERET [58]. The follow-
ings describe the details and the results.

The LFW dataset [57] consists of 5749 subjects with
total 13233 face images, which were captured from the web
in wild conditions. We evaluated our RI-LBD method with
the unsupervised setting in our expeiment. We followed the
standard evaluation protocol on “View 2” dataset [57], includ-
ing 6000 pairs with half of them matched and the others
mismatched. They were divided into 10 folds with 300 positive
pairs and 300 negative pairs for each fold. Assuming that the
deviation is not too large, each face image was firstly aligned
with a conventional 2D affine transformation and then cropped
into 128 × 128 to remove the background information.

The FERET dataset [58] contains 13539 face images
of 1565 subjects in different gender, age and ethnicity. We fol-
lowed the standard FERET evaluation protocol [58] with six
subsets including the training, fa, fb, fc, dup1 and dup2.
According to the provided eye coordinates, all face images
were firstly aligned and cropped into 128 × 128 pixels.
We utilized the training set for feature learning, the fa set
as the gallery set, and the others as the probe set.

In our experiments, we first divided face images into 8 × 8
non-overlapped regions as they were with good alignment.
Following the parameter analysis, R was fixed as 3, λ1 and
λ2 were set as 0.001 and 1 respectively, and binary length
K was 20. As images were divided into sub-regions in face
recognition, the dictionary size was 600 for each region,
so that the final representation of a face image was a 38400-
dimensional feature vector (38400 = 600×8×8). We directly
learned the rotational function for each uniform RBP without
initialization, because the rotations were small for aligned
face images. For the two-stage scheme, the rotational angle
was limited from −π/12 to π/12. Lastly, WPCA was used
to reduce the feature dimension to 1000, and we applied the
nearest neighbour (NN) method for face recognition.

1) Comparison With the State-of-the-Art Meth-
ods: Table VII tabulates the mean verification rate and the
area under ROC on LFW dataset and Fig. 12 shows the
ROC curve of our RI-LBD and TRICo-LBD compared with
the state-of-the-art methods. Table VIII shows the rank-one
recognition rate on FERET dataset. We see that our methods
achieved a very competitive result on LFW, and obtained
the best recognition rates on all four subsets of FERET.
Although the faces have been already pre-aligned, our RI-
LBD and TRICo-LBD outperformed the learning-based local
face descriptor such as DFD and CBFD because of the small
misalignments. The property of rotation-invariant is further
proved in the following subsection. Multi-directional multi-
level dual-cross patterns (MDML-DCPs) [64] applies the first

TABLE VII

MEAN VERIFICATION RATE (VR) (%) AND AREA UNDER ROC (AUC) (%)
COMPARED WITH THE STATE-OF-THE-ART ON LFW

Fig. 12. ROC curves of different methods on the unsupervised setting of
LFW database.

TABLE VIII

RANK-ONE RECOGNITION RATES (%) COMPARED WITH
THE STATE-OF-THE-ART ON FERET

derivative of Gaussian operator and exploits both holistic-
level and component-level facial features, which presents
strong robustness for face description. Compared with the
carefully designed state-of-the-art face descriptor MDML-
DCPs, the proposed RI-LBD and TRICo-LBD are general
local binary descriptor learning methods, which mainly focus
on rotation invariance and obtain comparable results with
MDML-DCPs on the FERET dataset. PAF delivered an excel-
lent result on LFW dataset, yet it combines local Gabor
filters for face representation and it also requires strong prior



DUAN et al.: LEARNING RI-LBD 3647

TABLE IX

RECOGNITION RATES (%) OF CBFD AND RI-LBD ON THE
ROTATED FACE DATABASES

TABLE X

CROSS-DATASET EVALUATION ON DIFFERENT TRAINING SETS (%)

knowledge to design a pose-adaptive filter. However, our
method is an unsupervised local binary feature learning
method, which directly learns from raw pixels and does
not require such prior knowledge. We evaluated our method
combined with Gabor filter, and obtained higher AUC than
PAF.

2) Rotation Invariance: We also added arbitrary rotation
variations ranging from −π/12 to π/12 on LFW and FERET
datasets similarly, and the comparison of CBFD and RI-LBD
are shown in Table IX. Note that as the rotated face images
were not aligned, we directly learned on the whole image
without devision. The two recognition rates for FERET dataset
represent the performance on dup1 and dup2 subsets, respec-
tively. Experimental results illustrate that, the improvement
of the proposed RI-LBD is small on the pre-aligned original
datasets, but it presents an outstanding performance with the
arbitrary rotation on the image, which proves the property of
rotation-invariant of the proposed method.

3) Cross-Dataset Evaluation: In real applications, large
variations always exist between the training set and the test set
due to varying environments. In order to further evaluate the
generalization ability of the proposed method, we designed a
cross-dataset experiment by utilizing different face databases
for training and testing. Firstly, we took the “View 1” subset of
LFW as the training set to train the orientation θn , the projec-
tion W and the codebook, which were used to evaluate on the
FERET dataset. Then, FERET was used for training, and tested
on LFW with the unsupervised setting. As the unconstrained
face images in LFW greatly differ from the face images in
FERET which are captured under controlled condition, this
experiment is especially designed to evaluate the efficiency of
RI-LBD under different conditions. Table X shows that the
best results were achieved by utilizing the same training set
and test set, and there was a small decline when they were
different. Though, the result of the cross-dataset evaluation
is still comparable with the state-of-the-art face descriptors,
which proves RI-LBD has a strong generalization ability.

TABLE XI

COMPUTATIONAL TIME (ms) OF THE PROPOSED RI-LBD COMPARED
WITH DIFFERENT FEATURES

4) Computational Time: We compared the computational
time with the real-valued feature SIFT and two local binary
descriptors LBP and CBFD. Table XI shows the feature
dimension and the computational time of our RI-LBD and
other methods. In this specific application of face recognition,
we have divided each face into 64 subregions to obtain a
concatenated descriptor, which is the main reason of the high
dimensionality (38400 = 600 × 64). With higher feature
dimensions, both CBFD and RI-LBD deliver stronger discrim-
inative power than LBP and SIFT. Moreover, while RI-LBD
obtains rotation invariance during the learning procedure,
it still achieves comparable efficiency compared with CBFD.

D. Scene Classification

In this section, we evaluate the proposed methods on three
widely used scene classification datasets, including Scene-
15 [65], MIT Indoor-67 [66] and SUN397 [67]. Scene-15 is
a widely used database for scene classification, which con-
tains totally 15 indoor and outdoor categories, which include
kitchen, office, bedroom, living room, store, industrial, inside
cite, tall building, highway, street, open country, coast, forest,
mountain and suburb, with 201 to 410 images per class. In our
experiments, we first resized the images with the minimum
dimension of 256 pixels, and followed the standard evaluation
protocol [65] by randomly selecting 30 images per class as
the training set, 100 images as the gallery set and the rest
as the probe set. MIT Indoor-67 [66] is a popular indoor
scene classification dataset, which contains 16520 images
of 67 indoor scenes. We approximately used 30 images per
class for training, 50 images as the gallery set and 20 images
as the probe set. SUN397 [67] is a large-scale scene dataset,
which consists of 108754 images of 394 scene categories,
with at least 100 images per class. We trained and tested
the proposed approaches on ten partitions, where 50 training
images and 50 testing images have been used. We repeated for
10 times and took the average as the classification rate. We set
λ1 and λ2 as 0.0001 and 0.1, respectively. The binary length
was 20, the codebook size was 15000, and the dimension
preserved in WPCA was 70. SVM with RBF kernel was used
for classification.

Table XII shows the results of different methods on the
Scene-15 dataset, where TRICo-LBD obtains the highest
classification rate, while PRICoLBP [10] and our RI-LBD
achieve comparable performance. The proposed TRICo-LBD
exploits spatial co-occurrence patterns, providing higher order
statistical information in binary feature description. Compared
with simple applications such as texture classification which
contains many repetitive patterns, the co-occurred information
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TABLE XII

CLASSIFICATION RESULTS (%) ON SCENE-15 DATABASE
OF DIFFERENT METHODS

TABLE XIII

COMPARISON OF ACCURACY (%) WITH DIFFERENT SCENE CLASSIFICA-
TION METHODS ON THE MIT INDOOR-67 DATASET

TABLE XIV

COMPARISON OF ACCURACY (%) WITH DIFFERENT SCENE CLASSIFICA-
TION METHODS ON THE SUN397 DATASET

is more effective in complicated scene classification with a
3.1% of improvement.

Table XIII and Table XIV show the experimental results
of different scene classification methods on the MIT
Indoor-67 dataset and the SUN397 dataset, respectively.
Among the listed approaches, DeCAF [79], PlaceNet [72],
MOP-CNN [73], HybridNet [72], CFV [74] and CS [75] are

TABLE XV

RECOGNITION ACCURACY (%) OF RI-LBD AND TRICo-LBD WITH THE
SAME PARAMETERS COMPARED WITH THE ORIGINAL ACCURACIES.

IN THIS TABLE, RI REPRESENTS RI-LBD AND TRI REPRESENTS

TRICo-LBD

deep learning methods, while the others are conventional meth-
ods. As unsupervised feature learning methods, the proposed
RI-LBD and TRICo-LBD obtain comparable performance
with conventional scene classification methods. In order to
conduct a fair comparison with the supervised deep learn-
ing approaches, we have exploited the label information by
applying the discriminative deep metric learning (DDML) [80]
method to learn discriminative similarity measure function.
We observe that the proposed methods obtain encouraging
performance compared with the CNN methods. As RI-LBD
and TRICo-LBD still learn binary codes in an unsupervised
manner, the performance can be further improved by learning
supervised projections.

E. Robustness Analysis

In this paper, we conducted experiments on four visual
recognition tasks, which include image patch matching, tex-
ture classification, face recognition and scene classification.
As each visual recognition task presents different properties,
we simply fixed the parameters within each application.

In order to evaluate the robustness of the proposed RI-LBD
and TRICo-LBD to parameters, we conducted an experiment
by fixing parameters for all the tasks. As image patch matching
aims to directly match local patches through the learned binary
codes, and the other three applications need to recognize
holistic images using histogram features, we tested the last
three image recognition tasks by fixing the same parameters
as the results of the subsection of Parameter Analysis. More
specifically, we set R = 3, λ1 = 0.001 and λ2 = 1
for both approaches. For RI-LBD, the binary length K and
dictionary size was set as 20 and 10000, respectively, and
45 and 15000 for TRICo-LBD.

Table XV shows the experimental results of the fixed
approaches compared with the original accuracies. As we
applied the parameters used for texture classification,
the results remain the same on Brodatz, KTH-TIPS, CUReT
and Outex_TC12, while the performance suffers from a rea-
sonable drop on other datasets. For face recognition, the main
reason is that we do not divide the facial images into 8 × 8
regions to take the advantage of face alignment. For scene
classification, the codebook size is slightly small for the
description of the relatively complicated images.
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F. Discussion

The above experiments suggest the following four observa-
tions:

1) Our RI-LBD obtains rotation invariance by jointly learn-
ing the rotational function ψ for each RBP to mini-
mize the energy and the projection matrix W to make
the learned binary codes compact and energy-saving.
Compared with the two-stage scheme, RI-LBD exploits
the implicit relationship between the orientation and the
mapping, which achieves higher classification accuracy.

2) RI-LBD outperforms most state-of-the-art hand-crafted
local binary features on all the proposed applications
as it learns binary codes in a data-driven way and
presents more properties. Therefore, RI-LBD is more
data-adaptive and shows stronger discriminative ability.

3) The proposed RI-LBD shows strong efficiency and gen-
eralization ability through the cross-dataset evaluation,
which can apply to the applications where large varia-
tions exist between the training set and the test set.

4) The proposed TRICo-LBD presents stronger discrimi-
native power because it exploits higher order statistical
information to encode the co-occurred patterns. Such
information is more effective in complicated applications
such as face recognition and scene classification than
simple texture classification.

VI. CONCLUSION

In this paper, we have proposed a rotation-invariant local
binary descriptor (RI-LBD) learning method for visual recog-
nition. Specifically, we jointly learn the rotational function
for each rotational binary pattern (RBP) and the projec-
tion matrix to obtain rotation-invariant binary codes, which
can apply to more applications with rotation variations. The
proposed RI-LBD method outperforms most state-of-the-art
methods on four different applications, which proves the
effectiveness of our method. Moreover, we have developed a
TRICo-LBD method by exploiting co-occurred patterns to
provide higher order statistical information and have obtained
large improvement in complicated applications. To further
improve the classification ability, it is interesting to apply our
methods to deep learning framework in the future.
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