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Automatic Partial Face Recognition
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Abstract— In this paper, we propose a topology preserving
graph matching (TPGM) method for partial face recognition.
Most existing face recognition methods extract features from
holistic facial images. However, faces in real-world unconstrained
environments may be occluded by objects or other faces, which
cannot provide the whole face images for description. Keypoint-
based partial face recognition methods such as multi-keypoint
descriptor with Gabor ternary pattern and robust point set
matching match the local keypoints for partial face recognition.
However, they simply measure the nodewise similarity without
higher order geometric graph information, which are susceptible
to noises. To address this, our TPGM method estimates a
non-rigid transformation encoding the second-order geometric
structure of the graph, so that more accurate and robust
correspondence can be computed with the topological informa-
tion. In order to exploit higher order topological information,
we propose a topology preserving structural matching method
to construct a higher order structure for each face and estimate
the transformation. Experimental results on four widely used
face data sets demonstrate that our method outperforms most
existing state-of-the-art face recognition methods.

Index Terms— Partial face recognition, keypoint extraction,
structural matching.

I. INTRODUCTION

FACE recognition is a longstanding computer vision prob-
lem and a variety of face recognition methods have been

proposed over the past three decades [1], [4], [20], [37], [49],
[68]–[70], [80]–[82], [84]. While most methods have achieved
impressive performance under controlled conditions where
frontal holistic face images are prealigned and normalized,
there are still challenges for unconstrained face recognition
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Fig. 1. Several examples of partial faces. (a) Faces are occluded by
objects (sunglasses and a microphone) from YouTube Face (YTF) dataset [77].
(b) Faces in the red ellipse are occluded.

in many real-world applications. Typical face recognition
applications include smart surveillance systems and handheld
devices, where faces may be occluded by objects or other faces
under crowded scenes. In such scenarios, only partial faces can
be obtained and face alignment may fail to work with facial
landmarks occluded. Fig. 1 shows some examples of partial
face images.

Most face recognition methods including the state-of-the-art
CNN approaches [60], [64], [68], [69] utilize the whole face
images for recognition, which are not applicable to partial
face recognition. On the one hand, they assume that each
image have the same content of the aligned whole face and
describe the holistic facial images for representation. However,
the contents of images may be different even for the same
person in partial face recognition, e.g. one image without
the left eye and another without the mouth, which leads to
large intra-class variations. On the other hand, the occluded
objects are included in the representation, which may harm
the discriminative power. Therefore, it is required to design
a partial face recognition method which directly recognizes
partial faces and is robust to occlusions.

In order to better recognize partial faces, the occluded
face parts should be removed when computing the similarities
between probe partial faces and gallery faces. An intuitive idea
to address this problem is to align the partial faces and then
exclude the occlusions. However, these alignment methods
need to detect facial landmarks at first which may be occluded.
More recently, a few keypoint-based methods have been
proposed by computing the similarity between probe partial
faces and gallery faces over the detected feature keypoints on
the face images [44], [76], such as multi-keypoint descriptor
with Gabor ternary pattern (MKD-GTP) [44] and robust point
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Fig. 2. The flowchart of our proposed TPGM approach for partial face recognition. For each pair of images, we first detect SIFT keypoint descriptors on
both faces marked as green dots. Then, the keypoints are coarsely matched and selected based on Lowe’s method, where green lines represent the correct
matches while the red ones link the wrong matching keypoint pairs. We construct the graphs for both images by deploying Delaunay triangulation with
blue lines. In TPGM procedure, a non-rigid transformation is estimated encoding the structural graph iteratively, with outliers removed during the iteration.
Fig. 3 presents a more detailed illustration of the proposed TPGM. Finally, the probe partial face is aligned and recognized with the transformation and the
matching result.

set matching (RPSM) [76], which achieve the state-of-the-art
performance on partial face recognition. However, they only
exploit node-wise similarity, which depend heavily on descrip-
tors and are susceptible to illumination, deformation and other
noises. Graph matching is an effective manner to address
such unstableness by exploiting geometric structure of the
graph, which enhances the robustness of feature matching in
various of visual problems such as object categorization [15],
feature tracking [28] and action recognition [5]. Inspired
by the fact that graph matching delivers higher matching
accuracy and stronger stableness, we propose a topology
preserving graph matching (TPGM) method for partial face
recognition by estimating a non-rigid transformation encoding
the topological structure and measuring the correspondence
between nodes and edges to compute the similarity between
probe partial faces and gallery faces. Fig. 2 illustrates the
pipeline of our proposed TPGM method. In order to exploit
higher order structural information, we propose a topology
preserving structural matching (TPSM) method by extending
the second order geometric graph into higher order topological
structure, so that more accurate and robust correspondence
can be estimated. Experimental results on four widely used
datasets including Labeled Face in the Wild (LFW), PubFig,
AR and Extended Yale B (EYB) show the effectiveness of the
proposed approach.

This paper is an extended version of our conference
paper [10]. There are several new contributions:

1) We exploited higher order topological information to
enhance the robustness of the transformation, where
TPGM becomes a special case of the new TPSM.

2) We extracted the SiftSurfSILBPCNN descriptor rather
than SiftSurfSILBP to present stronger discriminative
power.

3) We conducted additional experiments on EYB and
holistic face recognition settings of LFW and PubFig
to show the effectiveness of the proposed methods.

II. RELATED WORK

In this section, we briefly review three topics: 1) robust
face recognition, 2) keypoint detection and description, and
3) graph matching.

A. Robust Face Recognition

There have been extensive work on robust face recogni-
tion with occlusion in recent years [11], [12], [22], [26],
[31], [42], [48], [50], [58], [73], [78]. Lahasan et al. [33]
summarized the recent strategies to overcome three major
challenges in face recognition: occlusion, single sample per
subject and expression. For example, Lahasan et al. [34] pro-
posed a harmony search oriented-elastic bunch graph match-
ing (HSO-EBGM) method by exploiting the optimal facial
landmarks, which obtained outstanding performance with the
occluded faces. Yang et al. [85] proposed a regularized
robust coding (RRC) method for robust face recognition by
regressing signals based on the maximum a posterior (MAP)
principle under the assumption that the coding residual and
vector are respectively independent and identically distributed.
Zheng et al. [88] also proposed a sparse representation dictio-
nary for robust face recognition. All these methods require
face alignment, which has been proved to be critical by
Ekenel and Stiefelhagen [16]. However, these face alignment
based methods fail to work well with unknown missing facial
portions. Also, a number of part-based representations have
been proposed, which can be mainly classified into subregion-
based methods [1], [49], [53], [59] and component-based
methods [6], [21], [61]. Subregion-based methods divide face
images into blocks and then compute the similarity between
faces by integrating the matching results for the subregions.
Component-based methods detect facial components such as
eyes, nose and mouth, and then fuse the similarity of compo-
nents for face matching. However, as occluded face regions
in real-world applications are exceedingly unstructured, both
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TABLE I

SUMMARIZATION OF RECENT FACE RECOGNITION METHODS

subregion-based methods and component-based methods may
fail with incorrect occlusion detection or occluded facial
components. More recently, a few keypoint-based approaches
have been proposed [44], [76] which remove the occluded
facial regions by computing on the detected feature keypoints.
Liao et al. [44] proposed a MKD-GTP method which was
the first general formulation of the partial face recognition.
Weng et al. [76] applied point set matching method by
considering the first-order compatibility between point sets,
which achieves the state-of-the-art performance. However,
these methods only exploit node-wise unary similarity without
higher order geometrical graph information, therefore, they
depend largely on descriptors and are susceptible to illumi-
nation, deformation and other noises. Table I summarizes the
widely-used face recognition methods for clear demonstration.

B. Keypoint Detection and Description

Local keypoint detection and description are two essential
steps for image matching, where keypoint detection finds
repeatable image regions despite of changes and keypoint
description captures distinctive and robust information of the
interest regions. Early keypoint detector can be traced back to
the work of Moravec [56]. Harris and Stephens [19] improved
the Moravec detector by making it more repeatable with small
image transformation and near edges, which becomes the
well-known Harris corner detector. Mikolajczyk et al. [55]
summarized and evaluated competitive detectors at the time.
As Harris corner detector is scale-variant, Rosten and Drum-
mond [62] proposed features from FAST criterion for keypoint
detection, which was further improved by AGAST [51]. After
detecting regions of interest, a descriptor is needed to describe
each local keypoint. SIFT [47] is the most famous keypoint
descriptor in the literature, as it provides high distinctiveness
and robustness. In order to improve the efficiency of SIFT,
Ke and Sukthankar [30] proposed PCA-SIFT to reduce the
dimension of the descriptor from 128 to 36. Bay et al. [3]
also presented SURF to obtain faster detection and description.
Mikolajczyk and Schmid [54] proposed the GLOH descriptor
to improve the distinctiveness of SIFT with higher com-
putation cost. More recently, several learning based local
descriptors have been proposed, which are more data-adaptive.
For example, Hussain et al. [24] presented a local quantized

pattern (LQP) method by improving LBP with a learned
coding strategy. Lu et al. [49] proposed a compact binary
feature descriptor (CBFD) by learning a hashing filter to
project image patches to compact binary codes. Lin et al. [45]
presented a deep learning approach to extract local descriptors
in an unsupervised manner. Duan et al. [13] learns deep binary
descriptor with multi-quantization (DBD-MQ) to minimize
quantization loss.

C. Graph Matching

Recent years have witnessed a number of graph match-
ing methods, which can be mainly classified into two cate-
gories: second-order graph matching [8], [9], [18], [38], [39],
[89], [90] and hyper-graph matching [14], [35], [83], [86].
Second-order graph matching methods estimate the correspon-
dence through the geometric similarity between nodes and
edges, where the objective quadratic assignment problem is
NP-hard. For example, Leordeanu et al. [39] optimized the
objective function in the discrete domain. Cho et al. [8]
presented a reweighted random walk graph matching (RRWM)
framework by iteratively optimizing the candidate correspon-
dences. Zhou and Torre [89], [90] factorized the affinity matrix
into a Kronecker product of small matrices. One step further,
hyper-graph matching methods exploit the higher-order rela-
tions, where third-order is the most frequently used. For exam-
ple, Lee et al. [35] developed the RRWM [8] framework into
higher-order and proposed a reweighted random walk hyper-
graph matching method (RRWHM). Yan et al. [83] presented
a discrete hyper-graph matching method by approximating
the problem into a first-order assignment and optimizing the
objective function in the integer domain.

III. PROPOSED APPROACH

In this section, we first model the partial face recognition
as a geometric graph matching task and present the TPGM
method. Then, we propose the TPSM approach to exploit
higher order structural information. Lastly, we introduce how
to use TPGM and TPSM for partial face recognition.

In order to incorporate the structural information, we utilize
Delaunay triangulation to construct a graph for each image
after keypoint extraction. There are four key properties to
describe each graph: the location of nodes, the distance vector
of edges, the descriptor for each node and the node-edge
relations. Therefore, we present each graph as a 4-tuple
g = {P, Q, T, G}, accordingly.

Let P = [p1, . . . , pn] ∈ R2×n be the set of nodes and
Q = [q1, . . . , qm] ∈ R2×m be the set of edges, where the
edges are the difference vectors between the coordinates of
connected nodes, and n and m are the number of keypoints
and edges, respectively. Also, we denote the textural features
of each node as T = [t1, . . . , tn] ∈ Rdt ×n and the node-edge
relation matrix as G ∈ {0, 1}n×m to encode the topology of the
graph, where gic = 1 if the cth edge connects the i th node.
In particular, g P = {PP, QP , TP , GP} represents the 4-tuple
facial graph from the probe set, and gG = {PG, QG , TG , GG}
is from the gallery. The objective of TPGM and TPSM is to
estimate a transformation from the probe graph to the gallery
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Fig. 3. An illustration of the proposed methods. For each image pair (with the probe partial face on the top and the gallery face on the bottom), we first
construct the geometric graphs where the green structure represents the probe face and the red one for the gallery face. Then, the TPGM approach iteratively
estimates the transformation to minimize both the textural and the geometric cost, and the outliers are removed during iteration. The probe graph gradually
aligned to the gallery graph. Finally the graphs as well as the face images are perfectly matched in iteration 3.

graph to simultaneously minimize the textural and geometric
costs, removing the outlier keypoints through the iterations.
Fig. 3 illustrates the procedure of the proposed methods.

A. Feature Extraction and Keypoint Filtering

We first extract keypoints and their descriptions on facial
images to construct the graph, and then filter the candidate
keypoints through coarse matching.

First, we apply Scale-Invariant Feature Transform (SIFT)
to detect keypoints [47], which is widely used for key-
point extraction. Then, we follow the “SiftSurfSILBP” [76]
and combine the CNN descriptor to construct “SiftSurf-
SILBPCNN” for keypoint description. More specifically,
we concatenate the SIFT descriptor with the Speeded Up
Robust Features (SURF) to enhance the robustness to illu-
mination variations [29], and further apply the Scale Invariant
LBP (SILBP) features [43] to exploit the detailed textual infor-
mation. For SILBP, we utilize its uniform pattern L B Priu2

P,R
with four different values of {P,R}: {8,1}, {8,2}, {16,2}
and {16,3}. Lastly, we apply VGG-16 [67] trained on the
ImageNet, reducing the dimension to 128 with PCA. The pro-
posed “SiftSurfSILBPCNN” combines the advantages of SIFT,
SURF, SILBP and CNN, showing robustness to rotation, scale
and illumination, which is important for keypoint description.

The number of keypoints detected by SIFT can be up to
hundreds in a typical 128 × 128 facial image, which would
suffer from heavy computational cost if we directly apply
graph matching on all keypoints. Therefore, we apply Lowe’s
matching approach to filter out obvious outliers at first, and
then perform our graph matching methods on the candidate
keypoints.

B. Topology Preserving Graph Matching

Let f p(·) and f q(·) be the non-rigid transformation func-
tion of nodes and edges, respectively, where f q(qc) =
f p(pi )− f p(p j ) for qc = pi −p j . We denote X ∈ {0, 1}n p×ng

be the correspondence matrix of nodes where Xi j = 1 for the
matched i th probe keypoint and j th gallery keypoint, so that
we can represent the node-wise mapping as h p(pP

i ) = PGXT
i .

Similarly, we can formulate the edge-wise mapping hq(·) with
the correspondence matrix of edges Y ∈ {0, 1}m p×mg . For
qP

i = pP
k − pP

l and qG
j = pG

k′ − pG
l′ , we set Yi j = 1 if both

Xkk′ = 1 and Xll′ = 1:

Y = 1
[
(GP)

T
XGG > 1

]
, (1)

where 1(true) = 1 and 1(false) = 0. The physical meaning
of (GP)

T
XGG ∈ {0, 1, 2}m p×mg is the number of matching

nodes connected with the corresponding edges, where edges
are matched only if both the two pairs of connected nodes are
matched.

With the denotations above, we formulate the objective
function for partial face matching as follows:

min J = Kt (tP , ht (tP)) + λp K p( f p(pP), h p(pP))

+ λq Kq ( f q(qP ), hq(qP )), (2)

where the f (·) function is the non-affine transformation, and
the h(·) function links the input probe nodes (edges) to the
output corresponding gallery nodes (edges).

The first term is to minimize the differences of textural
features between the matched nodes. The second term aims
to minimize the geometric distances between the transformed
matched nodes. The physical meaning of the third term is
to minimize the geometric distances between the transformed
matched edges.

1) Textural Matching Cost: The first term in (2) mea-
sures the difference of descriptors for the matched keypoints.
We obtain the textual matching cost by summing up the
Euclidean distances of the matched descriptors:

Kt =
n p∑
i

ng∑
j

Ti j Xi j = tr(TTX), (3)



DUAN et al.: TPSM FOR AUTOMATIC PARTIAL FACE RECOGNITION 1827

where

Ti j =
√

((tP
i − tG

j )
T
(tP

i − tG
j )). (4)

2) Node-Wise Matching Cost: The second term in (2)
measures the geometric differences between the transformed
probe keypoints and the corresponding gallery keypoints.

In order to incorporate the non-rigid transformation,
we apply the thin plate spline (TPS) model, and the bending
energy of TPS is formulated as follows:

K p =
ng∑
i

‖ f p(pP
i ) − h p(pP

i )‖2
2

+ λ

λp

∫∫ [(
∂2 f p

∂x2

)2

+
(

∂2 f p

∂x∂y

)2

+
(

∂2 f p

∂y2

)2]
dxdy, (5)

where f p(pP
i ) is computed as

f p(pP
i ) = A2×2pP

i + b2×1 + W�(i)n p×1. (6)

�(i)n p×1 =

⎡
⎢⎢⎢⎢⎢⎣

‖pP
i − pP

1 ‖2
2 log (‖pP

i − pP
1 ‖2

2)

‖pP
i − pP

2 ‖2
2 log (‖pP

i − pP
2 ‖2

2)
...

‖pP
i − pP

n p
‖2

2 log (‖pP
i − pP

n p
‖2

2)

⎤
⎥⎥⎥⎥⎥⎦

, (7)

where A and b are the affine transformation matrix and
the translation vector. �(i) is an n p × 1 vector, represent-
ing the internal geometry structure with the TPS kernel of
‖pP

i − pP
j ‖2

2 log (‖pP
i − pP

j ‖2
2). � is an n p × n p symmetric

matrix with �(i) as its i th column. W is the weight matrix
associated with �.

We substitute L1 norm for the L2 norm for linearization
and rewrite the non-rigid transformation term as follows:

K p = ‖APP
2×n p

+ b1T
n p

+ W�n p×n p − PG
2×ng

XT
ng×n p

‖1

+ λ

λp
‖W�‖1

= K p1 + λ

λp
K p2, (8)

where ‖W�‖1 represents the extent of affinity of the transfor-
mation. The transformation f (·) will be full affine if ‖W�‖1
is equal to zero.

3) Edge-Wise Matching Cost: The third term in (2) mea-
sures the geometric differences between transformed probe
edges and corresponding gallery edges.

We calculate the geometric distance between a pair of edges
with the squared L2 norm, where the difference between
qP

i and qG
i is ‖qP

i − qG
i ‖2

2. Let qP
i = pP

i1 − pP
i2 and

qG
i = pG

i1 − pG
i2, and we obtain the following edge-wise

objective function with the non-rigid transformation:

Kq =
m p∑

i

‖ f q(qP
i ) − hq(qP

i )‖2
2

=
m p∑

i

‖( f p(pP
i1) − f p(pP

i2))

− (h p(pP
i1) − h p(pP

i2))‖2
2. (9)

We reformulate and linearize the above equation into the
matrix form:

Kq = ‖AQP
2×m p

+ W2×n p (�Pi − �P j )n p×m p

− QG
2×mg

YT
mg×m p

‖1. (10)

Therefore, the objective function (2) can be rewritten as
follows:

min J = tr(TTX) + λp‖APP
2×n p

+ b1T
n p

+ W�n p×n p

− PG
2×ng

XT
ng×n p

‖1 + λ‖W�‖1

+ λq‖AQP
2×m p

+ W2×n p (�Pi − �P j )n p×m p

− QG
2×mg

YT
mg×m p

‖1. (11)

subject to
∑

i

Xi j ≤ 1,
∑

j

Xi j ≤ 1, Xi j ∈ {0, 1}n p×ng ,

A1,1 = A2,2, A1,2 = −A2,1. (12)

C. Optimization Details

As the objective function is NP-hard with discrete con-
straints which cannot be efficiently solved, we perform a
linearization and rewrite the objective function into a linear
programming (LP) form:

min J = tr(TT X) + λp1T
2 U1n p + λ1T

2 V1n p

+ λq1T
2 M1m p − λx 1T

n p
X1m p , (13)

subject to

−U ≤ APP + b1T
n p

+ W� − PGXT ≤ U,

−V ≤ W� ≤ V,

−M ≤ AQP + W(�Pi − �P j ) − QGYT ≤ M,

U ≥ 0, V ≥ 0, M ≥ 0,∑
i

Xi j ≤ 1,
∑

j

Xi j ≤ 1, Xi j ≥ 0,

A1,1 = A2,2, A1,2 = −A2,1. (14)

In (13), we relax the binary constraint of Xi j ∈ {0, 1}n p×ng

to a continuous domain 0 ≤ Xi j ≤ 1, and U ∈ R2×n p ,
V ∈ R2×n p and M ∈ R2×m p are auxiliary matrices repre-
senting the upper bounds of K p1, K p2 and Kq , respectively.
In order to avoid the degenerate cases when the optimal
solution of {A, W, X, b} are all zeros, we add a penalty term
of X in the formulation.
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1) Parameter Analysis: λ controls the effect of affine
transformation and non-rigid transformation, where a large λ
performs as a penalty term for the affine transformation, while
a small λ would lead to non-rigid transformation. λx balances
the number of matched pairs. A large λx preserves more
matching pairs while a small λx is more strict with less
matching pairs.

2) Region Shrinkage: We apply the successive candidate
region shrinkage [27], [41] to solve the LP model. For each
keypoint pP

i in the probe image, we set a candidate region Di

in the gallery image, which is a circle with the center point
of f p(pP) and the radius of r . We select the keypoints in
the candidate region as the candidates, while the others are
excluded in the optimization process by setting Xi j = 0.
We initialize the candidate regions as the holistic gallery
image, and gradually shrinks the candidate regions to refine
the matching candidates during the iteration. We formulate
the candidate region shrinkage as r (n+1) = α1 × r (n), where
0 < α1 < 1.

3) Parameter Shrinkage: As face images are globally rigid
and locally non-rigid, we apply relatively rigid transformation
in the global exploration period, and gradually convert to
non-affine transformation in the local exploitation period.
As λ controls the degree of the non-affine transformation,
we initialize λ to a relatively large value, which is gradu-
ally decreased during iterations. More specifically, we apply
λ(n+1) = α2 × λ(n+1), where 0 < α2 < 1.

4) Outlier Removal: The Lowe’s matching approach
matches the keypoint pairs only based their descriptors, which
is coarse and may exist many incorrect matchings. Such
imposter matching pairs would harm the estimation of trans-
formation in the process of graph matching, and increase the
computational costs as well. Therefore, we remove the outliers
during the iteration by calculating the summation of each row
of X. For an outlier probe pP

j , all elements in the j th row of X
should be close to 0. Given a threshold 0 < τ < 1, we consider
the pP

j as an outlier and remove it from the candidate keypoints

if
∑n p

k=1 X j k < τ .
Algorithm 1 summarizes the detailed procedure of the

proposed TPGM method. We followed [76] by setting
λp = 0.01, λx = min(C) and λ = 5 for simplicity and a
fair comparison. λq is fixed to 0.05 through cross validation
for all the experiments.

D. Topology Preserving Structural Matching

The proposed TPGM only exploits second order graph
to estimate robust correspondence, which ignore the higher
order structural information. In order to exploit higher order
topological information, we propose a topology preserving
structural matching (TPSM) method by modelling a structure
of higher order and estimate the transformation through the
graph matching.

Similar to TPGM, we apply Delaunay triangulation to
construct the graph where the point p j is a neighbour point
(NP) of pi only when pi links to p j through a single neighbour
edge (NE) qc. In TPGM, we consider the point pi as the first
order information and its NE qc as the second order. In order to

Fig. 4. An illustration of the high order NPs and NEs. For the central big
point, the five neighbouring points are its 1st order NPs, and the small point
on the top is the 2nd order as the shortest distance to the central point is
two edges. With the orders of the NPs, the solid lines are 1st order NEs,
the dashed lines are 2nd order NEs and the chain lines are 3rd order NEs.

Algorithm 1 TPGM
Input: Probe image P , Gallery image G, iteration number T

and parameters λp , λx , λ, λq , τ , α1 and α2
Output: A, b, W, X, Y
1: Detect keypoints and extract SiftSurfSILBP features.
2: Using Lowe’s method to filter the keypoints and construct

the graph g P and gG .
3: Initialize r = rinit and set the constraint set � = ∅.
4: for t = 1, 2, · · · , T do
5: Construct �.
6: Obtain A, b, W, X, Y using (13).
7: Clear the constraint set � to ∅.
8: Find the outsiders of the candidate region and construct

the constraint set �.
9: Shrinkage: r (n+1) = α1 ×r (n) and λ

(n+1)
2 = α2 ×λ

(n+1)
2 .

10: Remove pP
i , Xi:, if

∑
j Xi j < τ .

11: Remove pG
j , X: j , if

∑
i Xi j < τ .

12: end for
13: Binarize X.
14: return A, b, W, X, Y

exploit higher order structural information, we extend the NPs
and NEs of a central point into more general nth order ones.
More specifically, we define the order of a NP as the smallest
number of passing edges to the central point, and the order
of a NE is the sum of its two linking points’ orders. Fig. 4
illustrates the high order NEs of a keypoint. As the 1st order
NEs exploit 2nd order information of a node, nth order NEs
represent the (n + 1)th order information. When n is large,
these edges express the configuration of the global graph
structure. When n is small, these sets of edges represent the
local structure, which is critical in partial identification.

Let S(pi ) be the set of neighbour edges of pi and En be the
number of nth order neighbour edges of pi , where S1(pi) =
{q1

i,1, q1
i,2, . . . , q1

i,E1
} is the 1st order NEs of pi and Sn(pi) =

{qn
i,1, qn

i,2, . . . , qn
i,En

} is the nth order NEs. We formulate
the structural matching cost Ks( f s(S(pP )), hs(S(pP))) as
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follows:

Ks =
∑
i,k

Ks( f s(Sk(pP
i )), hs(Sk(pP

i )))

=
∑
i, j,k

wk‖ f q (qk,P
i, j ) − hq(qk,G

i, j )‖2
2 (15)

where wk is the weight of structures under different orders.
In general, wk decreases with the increasing order of k,
because the structural matching costs should be more sensitive
for the nearby local structure rather than structures in distance.

If we set k = 1, the 1st order structures cover all the edges
in this special case:

{S1(pP
1 ), . . . , S1(p(n p)

P)} = {qP
1 , . . . , qP

m p
}. (16)

If we further set w1 = 1, we obtain:

Ks =
n p∑
i

E1∑
k

‖ f q(q P
i, j ) − hq(qG

i, j )‖2
2

=
m p∑
i

‖ f q(qP
i ) − hq(qG

i )‖2
2

= Kq( f q(qP ), hq(qP )), (17)

where the structural matching cost in TPSM degenerates into
the edge-wise matching cost in TPGM with both n and w1
equal to 1.

Similarly, we formulate (15) into a matrix form:

Ks =
n p∑
i

n∑
k

Ks( f s(Sk(pP
i )), hs(Sk(pP

i )))

=
n∑
k

wk‖AQ̂P
2×E P

k
+ W2×n p (�Pi − �P j )n p×E P

k

− Q̂G
2×EG

k
ŶT

EG
k ×E P

k
‖1, (18)

where Q̂P
2×E P

k
is the list of all kth order neighbour edges

of all keypoints in the probe set, and Q̂G
2×EG

k
is the list

of all kth order neighbour edges in the gallery set. r
is the rank of X to show the exact number of match-
ing pairs, so that E P

k = r × m p and EG
k = r × mg .

We set Q̂P
2×E P

k
= [Q̂1,k,P

2×m p
, Q̂2,k,P

2×m p
, . . . , Q̂

n p,k,P
2×m p

] where each

Q̂i,k,P
2×m p

= {qk,P
i,1 , qk,P

i,2 , . . . , qk,P
i,m p

} is the kth order neighbour

edges of i th probe node. ŶT
EG

k ×E P
k

is a block diagonal matrix

with r identical YT
mg×m p

on its diagonal. The predefined
adjacency matrix M represents the 1st order node connection.
We further define the power of a matrix. Let M0 = I and
Mk = M × Mk−1 for k �= 1, and Mk represents the kth order
adjacency, where Mk

ij = 1 means that node i is one of the kth

order neighbour points of node j . Q̂P
2×E P

k
can be pre-computed

using Mk .

Similarly, with the extension of the structure geometric
matching cost, we obtain the objective function of TPSM:

min J = Kt + λp K p + λs Ks

= tr(TT X) + λp‖APP
2×n p

+ b1T
n p

+ W�n p×n p − PG
2×ng

XT
ng×n p

‖1 + λ‖W�‖1

+ λs

n∑
k

wk‖AQ̂P
2×E P

k
+ W2×n p (�Pi − �Pj )

− Q̂G
2×EG

p
ŶT

EG
p ×E P

p
‖1 (19)

subject to
∑

i

Xi j ≤ 1,
∑

j

Xi j ≤ 1, Xi j ∈ {0, 1}n p×ng ,

A1,1 = A2,2, A1,2 = −A2,1. (20)

The objective function is NP-hard with binary constraints
and cannot be efficiently solved. We regulate the affine
transformation matrix A as a rigid transformation to prevent
unrealistic image warping, and relax the objective function
by linearization to convert the original problem into a linear
programming (LP) form:

min J = tr(TT X) + λp1T
2 U1n p + λ1T

2 V1n p

+ λs

n∑
k=1

wk1T
2 Mk1E P

k
(21)

subject to

−U ≤ APP + b1T
n p

+ W� − PGXT ≤ U,

−V ≤ W� ≤ V,

−M ≤ AQ̂ + W(�Pi − �P j ) − Q̂YT ≤ M,

U ≥ 0, V ≥ 0, M ≥ 0,∑
i

Xi j ≤ 1,
∑

j

Xi j ≤ 1, Xi j ≥ 0,

A1,1 = A2,2, A1,2 = −A2,1. (22)

In the above formulation, we relax the binary constraint
of Xi j ∈ {0, 1}n p×ng to a continuous domain 0 ≤ Xi j ≤ 1.
U ∈ R2×n p , V ∈ R2×n p and Mk ∈ R2×E P

k (k =
1, 2, . . . , n) are auxiliary matrices representing upper bounds
of ‖APP

2×n p
+b1T

n p
+W�n p×n p −PG

2×ng
XT

ng×n p
‖1, ‖W�‖1 and

‖AQP
2×E P

k
+ W2×n p (�Pi − �P j )n p×E P

k
− QG

2×EG
k

YT
EG

k ×E P
k
‖1

respectively. We summarize the detailed procedure of TPSM
in Algorithm 2.

E. Partial Face Recognition Using TPGM and TPSM

We obtain the average matching cost d̄ = Jmin/(
∑

i, j Xi j )
by dividing the matching cost with the number of matching
keypoints, and we compute the distance between the probe
and the gallery as follows:

d = d̄∑
i, j Xi j

= Jmin

(
∑

i, j Xi j )
2 = Kt + λp K p + λq Kq

(
∑

i, j Xi j )
2 . (23)

In (23), we separate the distance into two parts, the tex-
ture matching distance and the graph matching distance.
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Algorithm 2 TPSM
Input: Probe image P , Gallery image G, iteration number T

and parameters λp , λx , λ, λs , τ , α1 and α2
Output: A, b, W, X, Y
1: Detect keypoints and extract SiftSurfSILBP features.
2: Using Lowe’s method to filter the keypoints and construct

the graph g P and gG .
3: Initialize r = rinit and set the constraint set � = ∅.
4: for t = 1, 2, · · · , T do
5: Construct �
6: Add the constraint set � to (21) and solve LP to obtain

A, b, W, X, Y
7: Clear the constraint set � to ∅

8: Find the outsiders of the candidate region and construct
the constraint set �

9: Shrinkage: r (n+1) = α1 × r (n) and λ
(n+1)
2 = α2 × λ

(n+1)
2

10: Remove pP
i , Xi:, if

∑
j Xi j < τ

11: Remove pG
j , X: j , if

∑
i Xi j < τ

12: end for
13: Binarize X
14: return A, b, W, X, Y

The distance is proportional to the average matching cost
which indicates the matching difference, while it is inversely
proportional to the number of matching pairs which shows the
similarity of local structures in image pairs.

F. Discussion

1) Handling 3D Face Poses: In essence, a face is a
3D object and the yaw change on a 3D face causes the
self-occlusion, so that a 3D model is theoretically a more
accurate way to represent a face especially in dealing with
pose changes. However, the 3D spatial character of a face
is not really a major impact in most existing 2D face
recognition systems. A variety of 2D face alignment meth-
ods have achieved promising results over the past three
decades, where a 2D non-rigid transformation was used to
approximate 3D pose changes and obtained acceptable results.
We also believe that extending this algorithm to 3D space will
make more promising results, which is one interesting future
direction.

2) Influence of Initial Imposter Matching: The first step
of the proposed methods is feature extraction and matching,
which may suffer from imposter matching despite a relatively
strict threshold of Lowe’s method. To deal with this problem,
we gradually remove the outliers during iterations, and most
imposter matches are removed within only a few iterations in
our experiments. Therefore, the outlier removal step guaran-
tees the convergence under initial mismatches.

IV. EXPERIMENTS

We evaluated the performance of our proposed TPGM and
TPSM on four benchmark databases: LFW [23], PubFig [32],
AR [52] and EYB [36], where LFW, PubFig and EYB
are holistic face datasets and AR is a partial face dataset.

We compared the proposed TPGM and TPSM to several state-
of-the-art methods on both holistic and partial face recognition
tasks, which shows the effectiveness and robustness of the
proposed approach.

For LFW and PubFig, we first added random transformation
(e.g. random occlusion, rotation) to evaluate the proposed
methods on partial face recognition tasks, and then tested on
the original holistic facial images. For AR, we first evaluated
on the cropped and aligned datasets to make a fair comparison
with existing holistic face recognition methods, and then tested
on the original AR datasets with variant image sizes and
disalignment. For EYB, we followed the experimental settings
of [76] by adding arbitrary occlusion ranging from 0% (the
original dataset) to 50%.

A. Baseline Methods

In the experiments, we compared with 5 baseline algo-
rithms, which include Locally Affine Invariant Robust Point
set Matching (LAIRPM) [76], Robust Point Set Matching
(RPSM) [76], Metric Learned Extended Robust Point Match-
ing (MLERPM) [75], Multi-Keypoint Descriptors-Sparse
Representation-based Classification-Gabor Ternary Pattern
(MKD-SRC-GTP) [44] and Coherent Point Drift (CPD) [57].
Among the five baselines, three of them are alignment-free
matching methods and the others are the state-of-the-art partial
face recognition approaches.

1) Locally Affine Invariant Robust Point Set Match-
ing (LAIRPM) [76]: LAIRPM is based on [41],
which is a linear programming framework for feature
matching. The neighbourhood is built by k-nearest-
neighbour (KNN) with k = 5 to achieve the best
performance.

2) Robust Point Set Matching (RPSM) [76]: In RPSM,
both texture similarity and node affinity are used for
alignment-free matching. We set the parameters as
λp = 0.001, λx = min C, λ = 5 to obtain the best
performances.

3) Metric Learned Extended Robust Point Matching
(MLERPM) [75]: MLERPM utilizes feature set match-
ing to register the extracted local features. The cor-
respondence matrix and transformation parameters are
updated during the iteration process. Moreover, it applies
the RBF kernel for non-rigid transformation.

4) Multi-Keypoint Descriptors-Sparse Representation-
based Classification-Gabor Ternary Pattern
(MKD-SRC-GTP) [44]: MKD-SRC-GTP is designed
for well-aligned partial face recognition. It applies local
MKD-GTP features to describe partial faces and utilize
gallery feature sets to represent the images sparsely.

5) Coherent Point Drift (CPD) [57]: CPD considers the
alignment of two point sets as a probability density
estimation problem. It can be applied to both non-rigid
and rigid transformations. In the experiment, we utilized
the non-rigid RBF kernel.

B. Results on LFW

The Labeled Face in the Wild (LFW) database [23] consists
of 13233 labeled faces of 5749 subjects. The images were
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Fig. 5. Comparison of verification rates (%) under the unsupervised setting
of the LFW dataset versus varying (a) λq and (b) k.

obtained under unconstrained circumstances with large varia-
tions in scale, rotation, illumination and occlusion.

1) Parameter Analysis: We first tested the mean verifica-
tion rate under different parameters of the proposed TPGM
with unsupervised setting on “View 1” dataset in LFW, and
then applied these parameters on other experiments including
“View 2” of LFW, PubFig, AR and EYB.

We followed [76] by setting λp = 0.01, λx = min(C) and
λ = 5 for simplicity and a fair comparison. We tested the mean
verification rate with different λq fixing other parameters,
and Fig. 5 (a) shows that the best result was achieved when
λq = 0.05. Then, we evaluated the proper highest order k of
NEs in TPSM. TPSM would degenerate to TPGM for k = 1,
and the computational cost would increase with a too large k.
Also, as there are only a few candidate keypoints detected on
a partial face image, NEs with very high order may not exist.
Fig. 5 (b) shows that we should set the highest order k as 3.

2) Partial Face Recognition: We evaluated the proposed
method on the “View 2” of the LFW dataset, which included
6000 pairs in total with half of them matched and the other
mismatched. They are separated into 10 folds with 600 pairs
for each fold. In order to obtain partial face images, we first
applied the Viola-Jones face detector to detect and crop the
facial regions of all images. Then, we randomly transformed
those detected holistic facial images to obtain the arbitrary
face patches, where both gallery and probe images were
partial faces with some facial components cropped out, making
it extremely difficult to match. We added high dimensional
LBP (HDLBP) method [7] with face alignment by CFAN
facial landmark detector for comparison. In order to con-
duct full comparisons with the state-of-the-art face recogni-
tion methods, we have further evaluated the performance of
VGG [67], FaceNet [64], Center Loss [74], Light CNN [79]
and SphereFace [46] on the partial LFW dataset.

Table II shows the mean verification rate of our method,
HDLBP, CNN methods and baseline methods. Our TPGM
outperforms other baseline methods which proves its effective-
ness. HDLBP presents the poorest performance on the partial
face recognition task, although it achieves average accuracy
84% in LFW with the unsupervised setting of LFW. HDLBP
applies CFAN to detect 25 landmarks. However, it does not
work on partial faces, especially when some facial components
are occluded. Therefore, HDLBP suffers from severe mis-
estimation of facial landmarks, which is the main reason of the
performance gap. The proposed methods also outperform the

TABLE II

COMPARISON OF MEAN VERIFICATION ACCURACY AND
STANDARD DEVIATIONS (%) ON THE LFW DATASET

TABLE III

COMPARISON OF MEAN VERIFICATION RATE (VR) (%)
WITH THE STATE-OF-THE-ART FACE DESCRIPTORS

UNDER THE UNSUPERVISED SETTING OF

THE STANDARD LFW PROTOCOL

state-of-the-art holistic face recognition methods on the partial
faces, because the CNN models are trained on the aligned
holistic faces which have limitations to address the variations
of the unaligned partial faces.

3) Holistic Face Recognition: We then evaluated the pro-
posed methods with the unsupervised setting of LFW, follow-
ing the standard evaluation protocol on the “View 2” dataset
Each face image is aligned and cropped into 128 × 128 to
remove background information.

Table III tabulates the mean verification rates and Fig. 6
shows the ROC curves of our TPGM and TPSM compared
with the state-of-the-art face descriptors with the unsupervised
setting of LFW. We see that both TPGM and TPSM achieve
comparable results on this popular holistic face recognition
database. As keypoint-based partial face recognition methods,
although they sacrifice the whole structure of faces to some
extent for the robustness reasons, its structural graph still
has strong ability to describe the holistic face. Moreover,
the proposed methods match two face images directly, while
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Fig. 6. Comparison of ROC Curves With Different Methods Under the
Unsupervised Setting of the LFW Dataset.

TABLE IV

ITERATION NUMBER AND COMPUTATIONAL TIME (S) PER

IMAGE PAIR OF RPSM AND THE PROPOSED TPGM

some learning-based methods need training procedure with
extra images. Compared with TPGM, TPSM exploits higher
order topological information of holistic faces, which achieves
better performance. The proposed methods obtain comparable
results on holistic face recognition task and achieve the high-
est accuracy on partial face recognition, which proves their
effectiveness and robustness.

4) Iteration Number and Computational Time: We com-
pared the average iteration number and computational time of
RPSM [76] and the proposed TPGM. Our hardware configu-
ration comprises of a 2.8-GHz CPU and a 15G RAM. In each
experiment, the time complexity varies with the number of ini-
tial matching keypoints, and Table IV shows the mean iteration
number and the computational time of the proposed TPGM as
well as RPSM on LFW. We observe that TPGM converge
faster than RPSM and costs less computational time, because
the geometric information accelerates the convergence.

5) Partial Face Detection: The proposed TPGM and TPSM
should work on a detected and cropped single face to avoid
doubts. In our experiments, we directly processed the cropped
holistic faces to obtain partial faces, where we verified whether
these processed faces can still be detected by existing face
detectors in this subsection.

We randomly selected 16 processed partial faces from the
LFW dataset and grouped them into one image for face
detection. Figure 7 shows the detection results by the widely-
used Fast R-CNN method [17]. We observe that all the partial
faces can be correctly detected. In order to further evaluate the
performance of face detector under partial faces, we tested Fast
R-CNN on two real examples with severe occlusions on faces.
Figure 8 shows that existing face detectors successfully detect
partial faces.

Fig. 7. The Results of Face Detection for the Partial Faces From the
LFW Dataset.

C. Results on PubFig

PubFig dataset [32] contains 58797 images of 200 peo-
ple under unconstrained conditions, with variations in poses,
illuminations, expressions and background. We utilized the
evaluation sets of 140 people as the test set and the remain-
ing 60 people as the development sets. In order to address
the problems of duplication, unavailability and false labels,
we applied a selected dataset [76] in which each subject has
5 images. The selected dataset well preserves the variation in
poses, illuminations, expressions and background.

1) Partial Face Recognition: We tested on the modified
PubFig dataset for partial face recognition to evaluate the
effectiveness of the proposed methods. We first randomly
transformed the original images to obtain partial face patches.
In the transformation process, We first randomly rotated each
image with an angle uniformly distributed in [-20,20]. Then,
we cropped the rotated image into h × w, where h and
w could be as small as 0.8 times of original height and
width respectively. Finally, we randomly scaled the cropped
image ranging from 0.8 to 1.2. After the transformation,
the patches were randomly split into five subsets, and we con-
ducted five-fold testing scheme to test. We added three base-
line methods for comparison, including Housdorff distance
(HausDist) [25], earth mover’s distance (EMD) [63] and
Lowe’s matching method, which only apply the textural fea-
tures (SiftSurfSILBP) for image matching.

Table V shows that the proposed TPGM and TPSM out-
perform other state-of-the-art partial face recognition methods.
We observe that HousDist, EMD and Lowe’s matching method
obtain poor results as they rely on feature descriptors without
geometric information. However, the textural hand-crafted
features are not robust enough for the unconstrained wild
condition.

2) Holistic Face Recognition: We tested our method on
holistic face recognition by directly using the selected
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Fig. 8. The Results of Face Detection for the Partial Faces From the Real Pictures, Where the Faces Under Severe Occlusions Can Still be Detected by the
Widely-Used Face Detector.

TABLE V

COMPARISON OF AVERAGE RECOGNITION

RATES (%) ON THE PUBFIG DATASET

TABLE VI

COMPARISON OF MEAN VERIFICATION RATES AND STANDARD

DEVIATIONS (%) ON THE PUBFIG DATASET

evaluation set of PubFig database in our experiments, without
alignment or size normalization. We paired up every two
images from the five images for each subject to construct
1400 genuine matching pairs. Then, we randomly selected
two images from different subjects to construct 1400 imposter
matching pairs.

Table VI tabulates the mean verification rates and the
corresponding standard deviations of the proposed meth-
ods, compared with several alignment-free and partial face

recognition baseline methods. We observe that the proposed
TPGM and TPSM methods achieve the best results in the
PubFig dataset. For the feature matching methods, TPGM
and TPSM outperform CPD and MKD-SRC-GTP as they
exploit both the textural and geometric information of the
facial images, which are robust to illumination and local
changes. However, CPD and MKD-SRC-GTP only consider
the feature set similarity, which may be affected by large
variations. Compared with MLERPM, RPSM and LAIRPM,
our TPGM and TPSM exploit higher order geometric infor-
mation which are more robust and discriminative. More-
over, the SiftSurfSILBPCNN-based approaches have obtained
higher verification rates than with SiftSurfSILBP, which shows
the effectiveness of the our descriptor.

D. Results on AR

AR database [52] consists of 126 identities including
70 males and 56 females. It contains two sessions and each
session has 13 face images for each subject, where 3 of them
are taken under various illumination conditions, 4 of them
with different expressions, 3 of them wearing sunglasses and
3 wearing scarves.

In order to test the performance of the proposed methods
under occlusion scenarios, we conducted several experiments
on the AR database. We followed [76], [78], [87] by randomly
selecting 50 male subjects and 50 female subjects from the
original AR database. We denoted S1-G and S1-S as the
images with sunglasses and scarves in session 1, respectively,
and S2-G and S2-S in session 2. For each identity, we used
a single holistic face image without occlusion as the gallery
image, and 12 partial faces as the probe, where half of them
are with sunglasses and the other with scarves.

1) Aligned Partial Face Recognition: In order to make
a fair comparison with holistic face recognition methods,
we cropped all the images into 128×128 and aligned properly.
Table VII shows the identification accuracy, where our TPGM
and TPSM achieve better performance than other state-of-the-
art methods on S1-G and S2-G, and perform comparably to
MKD-SRC-GTP on S1-S and S2-S. In addition, the proposed



1834 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 7, JULY 2018

TABLE VII

COMPARISON OF RECOGNITION ACCURACY (%)
ON THE ALIGNED AR DATASET

TABLE VIII

COMPARISON OF RECOGNITION ACCURACY (%) WITH BASELINE

ALGORITHMS ON THE ORIGINAL AR DATASET

approaches have a consistently superior performance over
RPSM, MLERPM and LAIRPM, showing the effectiveness
of the higher order structural information. Through the exper-
iments, we found a key character of our TPGM and TPSM
is to robustly detect the outlier keypoints located in occlusion
parts and remove them during the iterations, which enhanced
the robustness of the methods.

2) Unaligned Partial Face Recognition: We further eval-
uated the performance of our proposed approaches on the
face recognition task where the original AR datasets were
directly used as probe images without cropped and align-
ment. It is ubiquitous in real-life applications that probe
images and gallery images are of different size and they
may not be properly aligned. Table VIII shows the recog-
nition accuracy of different methods. We observe that our
methods obtained the best results, showing the robustness
against various scales. The performance of MKD-SRC-GTP
decreased severely comparing with the recognition results
shown in Table VII. MKD-SRC-GTP utilizes Harris-Laplacian
keypoint detector [44] which is sensitive to corners, and
a great number of improper keypoints are detected for the
probe images containing the hair region full of corner points.
However, keypoints in the hair regions are not stable and
discriminative enough in the face recognition problem. We also
tested the performance of CNN using the pre-trained VGG-16
network [60] where the proposed methods outperforms VGG
on this dataset. The reason is that CNN approaches describe
the holistic facial images for partial faces, leading to large
intra-class variance.

TABLE IX

COMPARISON OF RECOGNITION ACCURACY (%) UNDER
DIFFERENT OCCLUSION RATES ON THE EYB DATASET

E. Results on EYB

The Extended Yale B (EYB) database [36] contains
2414 face images of 38 subjects with various illumination
conditions. For each subject, we randomly chose 32 images
as training sets and the rest as testing sets. In our experiment,
we directly used the cropped EYB database, where the image
size of each facial image is normalized to 192 × 168.

We conducted the experiments of partial face recogni-
tion under arbitrary block occlusions on the EYB database.
We synthesized images with occlusion rates varying from
0% to 50% by randomly attaching an unrelated image to each
probe image, where 0% occlusion represented the original
dataset. Table IX shows that our methods outperform other
methods before the occlusion rate reaches 40%. However, their
performance degrades when the occlusion rate reaches 40%.
In spite of this, they perform consistently better than RPSM
and LAIRPM at all occlusion rates, showing the benefits of
exploiting higher order geometric information to enhance the
robustness of the matching method.

F. Discussion

The above experiments suggest the following four
observations:

1) Our TPGM and TPSM outperform other state-of-
the-art face descriptors on partial face recognition.
Compared to conventional face descriptors extracted
from holistic faces which are severely affected by
occlusions and misalignment, the proposed methods
extract and match on robust keypoints to remove the
occluded facial parts. Compared to existing keypoint-
based methods, the proposed methods exploit higher
order topological information to obtain more robust
transformation and faster convergence.

2) Our TPGM and TPSM obtain competitive results on
holistic face recognition. Although they only utilize
the textural and geometric information on the detected
keypoints and sacrifice the holistic face information to
some extent, its structural graph still has strong ability
to describe the holistic faces.

3) The proposed TPSM method further improves the per-
formance of TPGM. By modeling general high order
NPs and NEs, TPSM exploits higher order structural
information and delivers stronger effectiveness and
robustness.
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4) Our TPGM and TPSM directly match the face pairs
without training procedure and have achieved the state-
of-the-art verification rates on partial face datasets,
which shows their strong efficiency and generalization
ability.

V. CONCLUSION

In this paper, we have proposed a topology preserving graph
matching (TPGM) method for partial face recognition, where
a key character is to embrace the affinity of both nodes and
edges in the problem of matching. With the geometric graph
structure, TPGM obtains more accurate and robust correspon-
dence which leads to a stronger recognition ability. In order to
exploit higher order structural information, we have presented
a topology preserving structural matching (TPSM) method by
modeling and utilizing general high order neighbour points and
neighbour edges. The experimental results on four widely used
datasets demonstrate the accuracy, robustness and efficiency of
the proposed methods. As deep learning is only used to extract
keypoint descriptors, it is interesting to apply deep learning to
the graph matching procedure to further improve the matching
ability.
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