

Deep Adversarial Metric Learning

Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, and Jie Zhou

Department of Automation, Tsinghua University, China <u>http://ivg.au.tsinghua.edu.cn/people/Yueqi_Duan/</u>

Sampling Matters

- Objective functions
 - $\blacktriangleright \text{ Contrastive loss: } L_{\text{cont}}(x_i, x_j; \theta) = \mathbf{1}\{y_i = y_j\}D_{ij}^2 + \mathbf{1}\{y_i \neq y_j\}[\alpha D_{ij}]_+^2$
 - Friplet loss: $L_{tri}(x_a, x_p, x_n; \theta) = [D_{ap}^2 D_{an}^2 + \alpha]_+$

Easy negatives account for the vast majority.

Are easy negatives really useless?

Anchor Hard

Easy

[Wu et al., ICCV'17; Harwood et al., ICCV'17; Yuan et al., ICCV'17]

Hard Negative Sting!

Easy negatives may have potential to become hard negatives

Anchor Easy

Anchor

- Ignore easy negatives?
- DAML: Exploit easy negatives through adversarial hard negative generation

Tsinghua Unive

Hard

Objective Function

• Overall:

$$\min_{\theta_g, \theta_f} J = J_{\text{gen}} + \lambda J_{\text{m}}$$

• Hard negative generator:

$$\begin{split} \min_{\theta_g} J_{\text{gen}} &= J_{\text{hard}} + \lambda_1 J_{\text{reg}} + \lambda_2 J_{\text{adv}} \\ &= \sum_{i=1}^N (||\widetilde{\mathbf{x}}_i^- - \mathbf{x}_i||_2^2 + \lambda_1 ||\widetilde{\mathbf{x}}_i^- - \mathbf{x}_i^-||_2^2 \\ &+ \lambda_2 [D(\widetilde{\mathbf{x}}_i^-, \mathbf{x}_i)^2 - D(\mathbf{x}_i^+, \mathbf{x}_i)^2 - \alpha]_+ \end{split}$$

Datasets

• CUB-200-2011 includes 11,788 images of 200 bird species.

• Cars196 contains 16,185 images of 196 cars models.

• Stanford Online Products has 120,053 images of 22,634 products from eBay.com.

Experiments on CUB-200-2011

Method	NMI	F_1	R@ 1	R@2	R@4	R@8
DDML	47.3	13.1	31.2	41.6	54.7	67.1
Triplet+N-pair	54.1	20.0	42.8	54.9	66.2	77.6
Angular	61.0	30.2	53.6	65.0	75.3	83.7
Contrastive	47.2	12.5	27.2	36.3	49.8	62.1
DAML (cont)	49.1	16.2	35.7	48.4	60.8	73.6
Triplet	49.8	15.0	35.9	47.7	59.1	70.0
DAML (tri)	51.3	17.6	37.6	49.3	61.3	74.4
Lifted	56.4	22.6	46.9	59.8	71.2	81.5
DAML (lifted)	59.5	26.6	49.0	62.2	73.7	83.3
N-pair	60.2	28.2	51.9	64.3	74.9	83.2
DAML (N-pair)	61.3	29.5	52.7	65.4	75.5	84.3

Experiments on Cars196

Method	NMI	F_1	R@1	R@2	R@4	R@8
DDML	41.7	10.9	32.7	43.9	56.5	68.8
Triplet+N-pair	54.3	19.6	46.3	59.9	71.4	81.3
Angular	62.4	31.8	71.3	80.7	87.0	91.8
Contrastive	42.3	10.5	27.6	38.3	51.0	63.9
DAML (cont)	42.6	11.4	37.2	49.6	61.8	73.3
Triplet	52.9	17.9	45.1	57.4	69.7	79.2
DAML (tri)	56.5	22.9	60.6	72.5	82.5	89.9
Lifted	57.8	25.1	59.9	70.4	79.6	87.0
DAML (lifted)	63.1	31.9	72.5	82.1	88.5	92.9
N-pair	62.7	31.8	68.9	78.9	85.8	90.9
DAML (N-pair)	66.0	36.4	75.1	83.8	89.7	93.5

Experiments on Stanford Online Products

Method	NMI	F_1	R@1	R@10	R@100
DDML	83.4	10.7	42.1	57.8	73.7
Triplet+N-pair	86.4	21.0	58.1	76.0	89.1
Angular	87.8	26.5	67.9	83.2	92.2
Contrastive	82.4	10.1	37.5	53.9	71.0
DAML (cont)	83.5	10.9	41.7	57.5	73.5
Triplet	86.3	20.2	53.9	72.1	85.7
DAML (tri)	87.1	22.3	58.1	75.0	88.0
Lifted	87.2	25.3	62.6	80.9	91.2
DAML (lifted)	89.1	31.7	66.3	82.8	92.5
N-pair	87.9	27.1	66.4	82.9	92.1
DAML (N-pair)	89.4	32.4	68.4	83.5	92.3

• Hard negative mining ignores large numbers of easy negatives

• DAML taps their potential through adversarial hard negative generation

• The synthetic hard negatives provide essential complements for effective metric learning