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Metric Learning
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Original Space Learned Space



Sampling Matters
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• Objective functions
 Contrastive loss:
 Triplet loss:

• Hard negatives produce gradients with large magnitudes, while 

easy negatives are close to zero

• Hard negative mining for effective metric learning

[Wu et al., ICCV’17; Harwood et al., ICCV’17; Yuan et al., ICCV’17]

Hard EasyAnchor

Easy negatives account for the vast majority.

Are easy negatives really useless?



• Easy negatives may have potential to become hard negatives

• Ignore easy negatives?

• DAML: Exploit easy negatives through adversarial hard negative 

generation

Generating!Hard Negative
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Mining?

EasyAnchor HardAnchor



Deep Adversarial Metric Learning
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Contrastive loss, Triplet loss,
Lifted loss, N-pair loss, …

Not too far!

Hard in the original space

Adversarial to the metric



• Overall:

• Hard negative generator:

Objective Function
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• CUB-200-2011 includes 11,788 images of 200 bird species.

• Cars196 contains 16,185 images of 196 cars models. 

• Stanford Online Products has 120,053 images of 22,634 

products from eBay.com. 

Datasets
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Experiments on CUB-200-2011
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Experiments on Cars196
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Experiments on Stanford Online Products
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• Hard negative mining ignores large numbers of easy negatives

• DAML taps their potential through adversarial hard negative 

generation

• The synthetic hard negatives provide essential complements for 

effective metric learning

Summary
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