

Motivation

> Deep metric learning methods usually utilize hard negative **mining** strategy to better exploit large-scale negative data^[1]

- \succ There are two key limitations of only mining observed data: \succ The observed hard negatives may not be enough to fully describe
 - the distributions of negative samples near the margin
 - > A large number of easy negative samples are wasted which produce gradients close to zero

Flowchart

- > Utilize the generated hard negatives to train the metric
- \succ Jointly train the generator and the metric adversarially

Deep Adversarial Metric Learning Yueqi Duan, Wenzhao Zheng, Xudong Lin, Jiwen Lu, Jie Zhou

Network Architecture

Metric

Learning

- Take the input with features extracted from CNNs and generate synthetic hard negatives for deep metric learning
- Employ existing metric learning losses generally

Objective Function

> Overall

 $\min_{\alpha} J = J_{\text{gen}} + \lambda J_{\text{m}}$

Hard negative generator

$$\min_{\theta_g} J_{\text{gen}} = J_{\text{hard}} + \lambda_1 J_{\text{reg}} + \lambda_2$$

$$= \sum_{i=1}^{N} (||\widetilde{\mathbf{x}}_{i}^{-} - \mathbf{x}_{i}||_{2}^{2} + \sum_{i=1}^{N} (|\widetilde{\mathbf{x}}_{i}^{-} - \mathbf{x}_{i}^{-} - \mathbf{x}_{i}||_{2}^{2} + \sum_{i=1}^{N} (|\widetilde{\mathbf{x}}_{i}^{-} - \mathbf{x}_{i}^{-} -$$

+ $\lambda_2 [D(\widetilde{\mathbf{x}}_i^-, \mathbf{x}_i)^2 - D(\mathbf{x}_i^+, \mathbf{x}_i)^2 - \alpha]_+)$

- \succ J_{hard}: Encourage hard negative sample in the original space
- J_{reg}: Regularize the generated negative sample not too far away
- J_{ady}: Make the generator adversarial to the learned metric

References

[1] F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition and clustering, CVPR, 2015.

 $J_{\rm adv}$

$\cdot \lambda_1 || \widetilde{\mathbf{x}}_i^- - \mathbf{x}_i^- ||_2^2$

Experiments

The CUB-200-2011 dataset

Method DDML Triplet+N-pair Angular Contrastive DAML (cont) Triplet DAML (tri) Lifted	NMI 47.3 ir 54.1	NI	[F ₁]	R@1	$\mathbf{R}@2$	$\mathbf{P} \oslash \mathbf{A}$	
DDML Triplet+N-pair Angular Contrastive DAML (cont) Triplet DAML (tri) Lifted	47.3 ir 54.1						K@4	K@ð
Triplet+N-pair Angular Contrastive DAML (cont) Triplet DAML (tri) Lifted	ir 54.1	47	13.	1	31.2	41.6	54.7	67.1
Angular Contrastive DAML (cont) Triplet DAML (tri) Lifted	п J т .1	N-pair 54	20.	0	42.8	54.9	66.2	77.6
Contrastive DAML (cont) Triplet DAML (tri) Lifted	61.0	: 61	30.	2	53.6	65.0	75.3	83.7
DAML (cont) Triplet DAML (tri) Lifted	47.2	tive 47	12.	5	27.2	36.3	49.8	62.1
Triplet DAML (tri) Lifted) 49.1	(cont) 49	16.	2	35.7	48.4	60.8	73.6
DAML (tri) Lifted	49.8	49	15.	0	35.9	47.7	59.1	70.0
Lifted	51.3	(tri) 51	17.	6	37.6	49.3	61.3	74.4
	56.4	56	22.	6	46.9	59.8	71.2	81.5
DAML (lifted)	1) 59.5	(lifted) 59	26.	6	49.0	62.2	73.7	83.3
N-pair	60.2	60	28.	2	51.9	64.3	74.9	83.2
DAML (N-pair)	00.2		20	5	527	654	75.5	84.3

The Cars196 dataset

Method	NMI	F_1	R @1	R@2
DDML	41.7	10.9	32.7	43.9
Triplet+N-pair	54.3	19.6	46.3	59.9
Angular	62.4	31.8	71.3	80.7
Contrastive	42.3	10.5	27.6	38.3
DAML (cont)	42.6	11.4	37.2	49.6
Triplet	52.9	17.9	45.1	57.4
DAML (tri)	56.5	22.9	60.6	72.5
Lifted	57.8	25.1	59.9	70.4
DAML (lifted)	63.1	31.9	72.5	82.1
N-pair	62.7	31.8	68.9	78.9
DAML (N-pair)	66.0	36.4	75.1	83.8

The Stanford Online Products dataset

Method	NMI	F_1	R@1	R@10	R@100
DDML	83.4	10.7	42.1	57.8	73.7
Angular	86.4 87.8	21.0 26.5	58.1 67.9	76.0 83.2	89.1 92.2
Contrastive	82.4 83.5	10.1	37.5	53.9	71.0
DAML (cont)	03.3	10.9	41. /	57.5	/3.5
DAML (tri)	80.3 87.1	20.2 22.3	53.9 58.1	72.1 75.0	85.7 88.0
Lifted	87.2	25.3	62.6	80.9	91.2
DAML (lifted)	89.1	31.7	66.4	82.8	92.5
DAML (N-pair)	87.9 89.4	32.4	68.4	82.9 83.5	92.1 92.3

Email: duanyq14@mails.tsinghua.edu.cn

