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Figure 1. We propose a text-to-shape synthesis approach named Diffusion-SDF. Our method is capable of performing various text-to-shape
tasks including text-to-shape generation (directly generating 3D shapes from texts), text-guided shape completion (generating the missing
part of an incomplete shape under the guidance of texts), and text-guided shape manipulation (modifying a given shape according to texts).

Abstract

With the rising industrial attention to 3D virtual mod-
eling technology, generating novel 3D content based on
specified conditions (e.g. text) has become a hot issue.
In this paper, we propose a new generative 3D model-
ing framework called Diffusion-SDF for the challenging
task of text-to-shape synthesis. Previous approaches lack
flexibility in both 3D data representation and shape gen-
eration, thereby failing to generate highly diversified 3D
shapes conforming to the given text descriptions. To ad-
dress this, we propose a SDF autoencoder together with
the Voxelized Diffusion model to learn and generate rep-
resentations for voxelized signed distance fields (SDFs) of
3D shapes. Specifically, we design a novel UinU-Net ar-
chitecture that implants a local-focused inner network in-
side the standard U-Net architecture, which enables better
reconstruction of patch-independent SDF representations.
We extend our approach to further text-to-shape tasks in-
cluding text-conditioned shape completion and manipula-
tion. Experimental results show that Diffusion-SDF is ca-
pable of generating both high-quality and highly diversified
3D shapes that conform well to the given text descriptions.
Diffusion-SDF has demonstrated its superiority compared
to previous state-of-the-art text-to-shape approaches.

†Corresponding author.

1. Introduction
Exploring data representations for 3D shapes has been a

fundamental and critical issue in 3D computer vision. Ex-
plicit 3D representations including point clouds [38, 39],
polygon meshes [17, 24] and occupancy voxel grids [9, 53]
have been widely applied in various 3D downstream ap-
plications [1, 35, 56]. While explicit 3D representations
achieve encouraging performance, there are some primary
limitations including not being suitable for generating wa-
tertight surfaces (e.g. point clouds), or being subject to topo-
logical constraints (e.g. meshes). On the other hand, im-
plicit 3D representations have been widely studied more
recently [3, 14, 37], where representative works including
DeepSDF [37], Occupancy Network [32] and IM-Net [8].
In general, implicit functions encode the shapes by the iso-
surface of the function, which is a continuous field and can
be evaluated at arbitrary resolution.

In recent years, numerous explorations have been con-
ducted for implicit 3D generative models, which show
promising performance on several downstream applications
such as single/multi-view 3D reconstruction [23, 54] and
shape completion [12, 34]. Besides, several studies have
also explored the feasibility of directly generating novel 3D
shapes based on implicit representations [15, 21]. How-
ever, these approaches are incapable of generating specified
3D shapes that match a given condition, e.g. a short text
describing the shape characteristics as shown in Figure 1.
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Text-based visual content synthesis has the advantages of
the flexibility and generality [41, 42]. Users may generate
rich and diverse 3D shapes based on easily obtained natural
language descriptors. In addition to generating 3D shapes
directly based on text descriptions, manipulating 3D data
with text guidance can be further utilized for iterative 3D
synthesis and fine-grained 3D editing, which can be benefi-
cial for non-expert users to create 3D visual content.

In the literature, there have been few attempts on the
challenging task of text-to-shape generation based on im-
plicit 3D representations [29, 34, 48]. For example, Au-
toSDF [34] introduced a vector quantized SDF autoen-
coder together with an autoregressive generator for shape
generation. While encouraging progress has been made,
the quality and diversity of generated shapes still requires
improvement. The current approaches struggle to gener-
ate highly diversified 3D shapes that both guarantee gen-
eration quality and conform to the semantics of the input
text. Motivated by the success of denoising diffusion mod-
els in 2D image [13, 19, 36] and even explicit 3D point
cloud [31, 58, 59] generation, we find that DMs achieve
high-quality and highly diversified generation while being
robust to model training. To this end, we aim to design an
implicit 3D representation-based generative diffusion pro-
cess for text-to-shape synthesis that can achieve better gen-
eration flexibility and generalization performance.

In this paper, we propose the Diffusion-SDF framework
for text-to-shape synthesis based on truncated signed dis-
tance fields (TSDFs). Considering that 3D shapes share
structural similarities at local scales, and the cubic data vol-
ume of 3D voxels may lead to slow sampling speed for dif-
fusion models, we propose a two-stage separated generation
pipeline. First, we introduce a patch-based SDF autoen-
coder that map the original signed distance fields into patch-
independent local Gaussian latent representations. Sec-
ond, we introduce the Voxelized Diffusion model that cap-
tures the intra-patch information along with both patch-to-
patch and patch-to-global relations. Specifically, we de-
sign a novel UinU-Net architecture to replace the stan-
dard U-Net [46] for the noise estimator in the reverse pro-
cess. UinU-Net implants a local-focused inner network in-
side the outer U-Net backbone, which takes into account
the patch-independent prior of SDF representations to bet-
ter reconstruct local patch features from noise. Our work
digs deeper into the further potential of diffusion model-
based approaches towards text-conditioned 3D shape syn-
thesis based on voxelized TSDFs. Extensive experiments
on the largest existing text-shape dataset [6] illustrate that
our Diffusion-SDF approach has achieved promising gener-
ation performance on several text-to-shape tasks with regard
to the existing state-of-the-art approaches in both qualitative

Strictly, our approach utilizes a combined explicit-implicit representa-
tion as voxelized signed distance fields.

and quantitative evaluative dimension.

2. Related Work
Text-conditioned generative 3D models. In the field of
generative 3D modeling, a variety of works have focused
on synthesizing 3D visual content unconditionally [1, 32,
52, 56] or conditioned on single/multi-view images [9, 34,
54, 55]. Besides, there has also been a series of works con-
centrating on the challenging task of text-to-shape gener-
ation [6]. Some of them adopted purely explicit 3D data
representation-based methods to generate 3D shapes con-
ditioned on input text [6, 33, 58]. In contrast, our focus
lies on synthesizing 3D shapes based on implicit 3D data
representations. So far, there have also been few existing
works focusing on the task of implicit text-to-shape gener-
ation [29, 34, 48]. All of these approaches have yielded im-
pressive generation results, but there are still some remained
issues to be addressed. Sanghi et al. [48] proposed a nor-
malizing flow [43]-based approach to generate shape voxels
using implicit Occupancy Networks [32], and Liu et al. [29]
introduced a shape-IMLE [28] generator using implicit IM-
NET [8] decoder, while these approaches neither employ
the more flexible implicit SDFs as data representation nor
take into account the constraints for local shape structures.
More similar to our work, AutoSDF [34] introduced an au-
toregressive prior for 3D shape generation based on a dis-
cretized SDF autoencoder. The autoregressive model adopts
a relatively unnatural way to predict patched 3D tokens in a
sequential manner that loses the 3D-specific inductive bias
and is also relatively inefficient.
Diffusion Probabilistic Models. Diffusion Probabilistic
Models (DPMs) [19, 49], also known as diffusion mod-
els, have currently arisen as a powerful family of gener-
ative models. Compared to previous state-of-the-art gen-
erative models including Generative Adversarial Network
(GAN) [16], Variational Autoencoder (VAE) [26], and
Flow-based generative models [43], diffusion model shows
its superiority in both training stability and generative diver-
sity [11]. Diffusion models have achieved promising perfor-
mance on image [13, 19, 36, 45] and speech [7, 27] synthe-
sis. Especially, fairly impressive results have been achieved
with diffusion model-based approaches on the task of text-
to-image synthesis [41, 45, 47]. In the field of 3D computer
vision, several studies have adopted diffusion models for
generative 3D modeling [31, 58, 59]. PVD [59] employed
diffusion models to generate 3D shapes based on point-
voxel 3D representation. Luo et al. [31] treated points in
point clouds as particles in a thermodynamic system with
a heat bath. LION [58] introduced a VAE framework with
hierarchical diffusion models in latent space. All these ap-
proaches have focused on the diffusion process of explicit
3D data representations for shape generation. On the con-
trary, our work tries to explore the feasibility of diffusion
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Figure 2. Overview of Diffusion-SDF. We propose a two-stage pipeline to generate novel 3D shapes from texts. First, we train an
autoencoder to learn patch-independent normal-distributed representations for voxelized TSDFs. Then, we propose the Voxelized Diffusion
framework together with the UinU-Net denoiser to generate shape representations. Please check Figure 3 for more details of UinU-Net.

models on implicit 3D data representations.

3. Method

In this section, we introduce the methodology design for
Diffusion-SDF. In general, we propose a two-stage pipeline
as illustrated in Figure 2. Detailed information of each stage
will be included in the following sections.

3.1. Autoencoding Signed Distance Fields

Signed distance fields (SDF) belong to a type of im-
plicit 3D data representation which assigns the scalar signed
distance value to the shape surface for each point p in
the 3D space R3. Our objective is to generate the signed
distance fields for the target 3D shapes that match the
given text conditions. Specifically, the 3D data are rep-
resented by truncated signed distance functions (TSDF)
in a regularly-spaced voxel grid as [3, 22]. Generating
voxelized SDFs directly from denoising diffusion models
is both cost-expensive and time-consuming. In addition,
the local structural information of 3D shapes is not well-
emphasized through direct voxel-based generation. To ad-
dress this, we propose a patch-wise autoencoder to learn the
latent representations for voxelized signed distance fields.

Given a 3D shape, we first sample its truncated signed
distance field x as a voxel grid of size D3. Before the
shape x is encoded, it is first split into N local patches
of size P 3, producing a sequence of shape patches Xp =
[xp1, ..., xpN ], where N = (D/P )3 is the resulting num-
ber of patches. Then, the local shape encoder Eloc en-
codes each shape patches into latent representations Zp =
[zp1, ..., zpN ], where zpn = Eloc(xpn) ∈ Rd×d×d×c and c is

the number of latent channels. Here, since each patch is en-
coded independently, the local structural information can be
explored well through the local shape encoder. Meanwhile,
the input data scale can also be downsampled by the fac-
tor P . However, when reconstructing the shape from local
patches, it is also necessary to consider the spatial location
of each patch in the global shape, and the interrelationship
between adjacent patches. To preserve both patch-to-global
and patch-to-patch information while decoding the latent
embeddings, the patch embeddings are first rearranged into
a voxel grid embedding z, and then sent into the patch-joint
decoder D that reconstructs the SDF field from the latent
patches, giving x̃ = D(z).

In detail, we adopt a VAE [26, 44]-like autoencoder,
which encodes each shape patch into a normal distribu-
tion. We utilize a combination of both L1 reconstruction
loss together with the KL-regularization loss at the training
stage for the SDF autoencoder. The latter one forces a mild
KL-penalty towards a standard normal distribution on each
learned patch latent. The final SDF representations will be
in the form of patch-independent Gaussian distributions.

3.2. Voxelized Diffusion Models (VDMs)

Diffusion models (DMs) [19, 49] are a class of probabilis-
tic generative models that learn to fit a certain distribu-
tion by gradually denoising a Gaussian variable through
a fixed Markov Chain of length T . Given a data sample
x0 ∼ q(x0), DMs describe two different processes in the
opposite direction: a forward process q (x0:T ) that gradu-
ally transform a data sample into pure Gaussian noise, and
a reverse process pθ (x0:T ) that gradually denoise a pure
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Gaussian sample into real data,

q (x0:T ) = q (x0) ΠT
t=1q (xt|xt−1) ,

pθ (x0:T ) = p (xT ) ΠT
t=1pθ (xt−1|xt) ,

(1)

where q (xt|xt−1) and pθ (xt−1|xt) are both Gaussian
transition probabilities in the forms of

q (xt|xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
,

pθ (xt−1|xt) = N (xt−1;µθ (xt, t) , βtI) .
(2)

Based on [19], the mean variable µθ (xt, t) for the reverse
transition pθ (xt−1|xt) can be expressed in the form of

µθ (xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ (xt, t)

)
, (3)

where αt = 1 − βt, ᾱt = Πt
i=1αi, and βt decreases to

0 gradually as t approaches 0. The evidence lower bound
(ELBO) is maximized at the training stage of DMs, eventu-
ally leading to the loss function as the form of

LDM = Ex,t,ε∼N (0,1)

[
‖ε− εθ (xt, t)‖2

]
, (4)

where xt =
√
ᾱtx0 +

√
1− ᾱtε, and t is uniformly sam-

pled from {1, ..., T}. The neural network-based score esti-
mator εθ (xt, t) is the core function of denoising diffusion
models, which is implemented as a timestep-conditioned
denoising autoencoder in [19].
UinU-Net Architecture. In our scenario, we are designing
a novel diffusion-based architecture to generate latent SDF
representations with regard to the target text conditions.
The corresponding TSDF fields can be then reconstructed
through the patch-joint decoder which is pre-trained in the
first stage. As we mentioned in the above section, the key
part of generative diffusion models is to estimate the func-
tion approximator εθ from the data distribution of the train-
ing set. Since our model is designed to generate latent sam-
ples, the score estimator can be expressed as εθ (zt, t), as
the loss function becomes

LDiffusion−SDF = Ez,t,ε∼N (0,1)

[
‖ε− εθ (zt, t)‖2

]
.

(5)
To incorporate the 3D positional prior of different latent
shape patches, we adopt a 3D U-Net [10]-based autoen-
coder as the neural function approximator εθ that directly
learns to denoise the voxel grid embedding zt that is ob-
tained from the pre-trained local shape encoder Eloc. Be-
sides, another crucial prior for our design is the patch-based
encoding process, through which all the shape patches are
encoded into independent Gaussian distributions. Thus,
when generating the local shape embeddings, an impor-
tant point is to recover the independent distribution for

Deep Zone

Shallow Zone3×3×3 conv
1×1×1 conv

1×1×1 conv residual
spatial transformer
standard U-Net operatorsconcatenate Output: 𝔃𝔃𝒕𝒕−𝟏𝟏

Input: 𝔃𝔃𝒕𝒕

83×
192

83×
192

43×
384

83× 8

83× 8

43×
384

23× 768

83×
192

83×
192

Figure 3. Detailed illustration of UinU-Net. To better recover z
based on independently distributed patches, we propose to implant
an inner network inside the standard U-Net architecture. The inner
network is mainly composed of 1× 1× 1 convolutions, thus it fo-
cuses on patch-wise features, while the spatial transformer brings
in patch-to-patch information. (Standard U-Net operators include
3× 3× 3 residual blocks, conditional cross-attention layers, pool-
ing layers and up-scaling layers.)

each shape patch as well. To address this, we propose
a novel UinU-Net architecture for the implementation of
the autoencoder-based neural score estimator as shown
in Figure 3. The standard 3D U-net [10] adopts a se-
ries of 3 × 3 × 3 convolutional layers to construct a
downsampling-upsampling network architecture with the
information shared through skip connections. This design
takes into account the patch-to-patch and patch-to-global
features via hierarchical receptive fields. Given that our
input data are compressed 3D latent representations, and
each patch is encoded independently, we propose to implant
another inner network inside the outer U-Net architecture
where the embedded resolution is equal to the original la-
tent resolution D/P . Specifically, we adopt a 1 × 1 × 1
convolution-based ResNet [18] structure to learn indepen-
dent patch-focused information. We also introduce the spa-
tial Transformer [51] network that accepts positional em-
bedded patch representations as input tokens, following
self-attention layers to capture the relational information
between independent local patch embeddings. The inner
synthesis paths are skip-connected to the outer ones, ensur-
ing information transmission from inner to outer networks.
This architecture is designed to capture the intra-patch in-
formation along with both patch-to-patch and patch-to-
global relations.
Text-Guided Shape Generation So far, we have discussed
the generative process without text conditions. To synthe-
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size latent SDF representations based on given conditions,
we introduce a conditioning mechanism based on classifier-
free guidance diffusion [20]. We adopt a text-conditioned
score estimator. In detail, to fit the target conditions into
the 3D denoising autoencoder, we utilize the cross-attention
mechanism as proposed in [45]. The input caption is first
encoded as text embeddings through a pre-trained text en-
coder τ . Thus, the conditioned score can be formed as
εθ (zt|τ(c)), where c is the input caption. Meanwhile, we
also obtain an unconditioned score εθ (zt|∅) with an empty
sequence as input caption. Within the guided diffusion sam-
pling process, the output of the model is extrapolated further
in the direction of εθ(zt|τ(c)) and away from εθ(zt|∅) as:

ε̂θ (zt|τ(c)) = εθ (zt|∅) + s · (εθ (zt|τ(c))− εθ (zt|∅)) ,
(6)

where s ≥ 1 refers to the guidance scale.
Text-Guided Shape Completion Current shape comple-
tion approaches mainly focused on recovering the full
shapes from partial input shapes or single view images [1,
57, 59]. Besides, we have explored the feasibility of text-
conditioned shape completion. According to the patch-
based design of our SDF encoder, information for the given
shape patches can be encoded even if some of the patches
are missing. Motivated by the success of diffusion model-
based image inpainting [30, 45], we introduce a mask-
diffusion strategy to generate the missing shape based on
a pre-trained VDM. The core idea is to incorporate known
information into each denoising step of the reverse process.
For a full shape representation, we transform it into a partial
shape representation given the mask mz . For each estima-
tion step zt−1, we combine the estimated result through the
reverse process z̃t−1 with the forward sampling result of the
unmasked patches ẑt−1,

zt−1 = (1−m)� z̃t−1 +m� ẑt−1, (7)

where � refers to element-wise product, and

z̃t−1 ∼ N (µθ (zt, t, c) , βtI)

ẑt−1 =
√
ᾱtz0 +

√
1− ᾱtε.

(8)

By such a strategy, the unknown region can be recovered
based on both the given shape and text conditions.
Text-Guided Shape Manipulation Visual content editing
is one of the most valuable applications for vision-language
generation. We propose a diffusion-based text-guided shape
manipulation approach. For a given shape representation
zinit, our goal is to transform it into another shape repre-
sentation zgoal based on text c. Inspired by image manipu-
lation techniques [4, 25], we use a cycle-sampling strategy
based on a pre-trained VDM. Firstly, we forward-sample
the given shape zinit for tmid steps, where 0 < tmid < T .
This operation will lead to an intermediate output zmid

zmid =
√
ᾱtmid

zinit +
√

1− ᾱtmid
ε. (9)

Then, the reverse process will start from zmid, and another
tmid denoising steps will be conducted conditioned on c.
Such a design will make the generated shapes correspond
to the target text descriptions while maintaining the original
shape characteristics.

4. Experiments
To evaluate the effectiveness of our proposed Diffusion-

SDF, we conduct extensive experiments on several text-
conditioned 3D shape synthesis tasks including text-to-
shape generation, text-conditioned shape completion, and
text-guided shape manipulation. The following subsections
describe the details of the experimental settings, results, and
analyses.
Dataset. We mainly trained and evaluated our approach on
the current largest text-shape dataset Text2Shape (T2S) [6].
T2S gathered data in the form of shape-text pairs based on
two object classes (chairs, tables) in ShapeNet [5]. T2S con-
tains about 75K shape-text pairs in total (∼30K for chairs,
∼40K for tables), with an average of ∼16 words per de-
scription. T2S was originally designed to contain both color
and shape information within the text descriptions, while we
mainly focus on text-shape correspondence.
Implementation details. For the training stage of the SDF
autoencoder, to improve the model’s generalization abil-
ity, we trained the autoencoder across the 13 categories of
ShapeNet [5] dataset. For the input data, we sampled the
voxelized SDF from original shapes with 64× 64× 64 grid
points, which is also the data size adopted for follow-up
operations. For the diffusion stage, to facilitate the gener-
ative sampling speed, we adopt the DDIM [50] sampler to
reduce the original DDPM sampling steps from T = 1000
to 50. For the conditioning mechanism, we adopt a freeze
CLIP [40] text embedder as text encoder τ .

4.1. Text-Conditioned Shape Generation

The most direct application for our approach is gener-
ating novel shapes conditioned on the given text descrip-
tions. To demonstrate the effectiveness of our approach,
we compare our generation results with two state-of-the-
art supervised text-to-shape synthesis methods based on
implicit 3D representations [29, 34]. Besides, there are
some other works regarding text-to-shape generation, which
have different settings compared to our approach. For
instance, [48] proposed a zero-shot shape generation ap-
proach conditioned on categorical texts, and [15, 33] pro-
posed to generate textured shapes based on provided/pre-
generated meshes. Thus, these works are not compared di-
rectly to our approach.
Quantitative comparison. To compare the generation per-
formance of our approach to the previous methods quanti-
tatively, we propose to use several metrics to evaluate the
generated results:
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The chair is retro and round 
with little to no arm rest. 

A sofa with thick legs. A solid locking chair 
made of grey tiles.

Fabric chair with single-
piece gray metal legs.

An old fashioned rocking 
chair with very high back.

A rectangular table 
with four curving legs.

A two layered table 
with four legs.

A wooden round table 
with very thick legs.

A triangular table.A tall round table with 
one thin leg.

Figure 4. Qualitative results of text-to-shape generation. Our approach can generate shapes that conform to diverse text descriptions.

- IoU (Intersection over Union) measures the occupancy
similarity between the generated shape to the ground
truth. To compute the IoU score, we downsample all the
generated SDFs to occupancy voxel grids of size 323. IoU
metric is used to measure the conformity of the generated
samples with the ground truth shapes.

- Acc (Classification Accuracy) introduces a voxel-based
classifier, which is pre-trained to classify the 13 cate-
gories in ShapeNet [5] according to [48]. Acc metric is
used to measure the semantic authenticity of the gener-
ated samples.

- CLIP-S (CLIP Similarity Score) introduces the pre-
trained vision-language model CLIP [40] for further eval-
uation. The CLIP can be used to measure the correspon-
dence between given images and texts. We render 5 view
images for each generated shape, and compute the cosine
similarity score between rendered images and the given
text. The highest score is reported for each text query.
CLIP-S metric is used to measure the semantic confor-
mance between the generated samples and input texts.

- TMD (Total Mutual Difference). For each given text de-
scription, we generate k = 10 different samples. Then,
we compute the average IoU score for each generated
shape to other k − 1 shapes. The average IoU score for
all text queries is reported. TMD assesses the generation
diversity for each given text query.

To keep consistency with previous approaches, we limit
the comparisons to the chair category in Text2Shape [6]
dataset. Since the officially released AutoSDF [34] model
was trained on another dataset [2], we re-trained the
model following the original settings on the training set of

Table 1. Quantitative comparisons of text-to-shape generation.

Methods IoU↑ Acc↑ CLIP-S↑ TMD↓
Liu et al. [29] 0.160 34.79 29.94 0.891
AutoSDF [34] 0.187 83.88 29.10 0.581
Diffusion-SDF (Ours) 0.194 88.56 30.88 0.169

Text2Shape for the fair comparison. The results are shown
in Table 1. From the results, it can be seen that our ap-
proach is able to achieve relatively high generation quality
with high IoU and Acc scores, and robust text-shape con-
formance with good CLIP-S performance, while achieving
much better generation diversity with a much lower TMD
performance.
Qualitative results. The quantitative experiment shows
the generation performance of our approach on the lim-
ited given subset from Text2Shape dataset. Due to the
generalization of natural language, our approach is capa-
ble of generating different forms of shapes based on various
text descriptions. Figure 4 shows the generated results of
Diffusion-SDF from different text inputs. The results show
that our method can generate eligible results from distin-
guished conditions. Besides, our method is capable of syn-
thesizing various shape outputs from the same input text
description. Figure 5 compares our approach with [29, 34]
based on same text queries. The results have shown that
our method has a great advantage in the diversity of gener-
ated samples, while the previous approaches are unable to
generate highly-diversified shapes.

4.2. Ablation Studies

We have conducted extensive ablation studies to demon-
strate the effectiveness of our special architecture design for
Diffusion-SDF.
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An office chair A revolving chair.

Ours

AutoSDF

Liu et al.

Figure 5. Qualitative comparison of diversified text-to-shape generation. Our approach is capable of generating highly-diversified
shapes that conform to the same text query, while also keeping the satisfactory quality of the generated shapes.

A bar stool. A round table with curving legs.

UinU-Net

U-Net

Figure 6. Qualitative comparison of U-Net and UinU-Net. Since UinU-Net-based architecture contains a local-focused inner network,
it can better recover the independent patch representations, thereby improving the generation quality compared to conventional U-Net.

Effectiveness of the UinU-Net architecture. In order to
validate the benefit of our proposed modifications to the
conventional U-Net architecture, we additionally compare
our proposed UinU-Net architecture to the simpler U-Net
architecture used in [45]. The quantitative results for text-
to-shape generation are shown in Table 2. Qualitative com-
parisons are shown in Figure 6. From the results, it can
be found that our proposed UinU-Net architecture for Vox-
elized Diffusion models generally improves the quality of
generated shapes. With the UinU-Net architecture, the
noise for each step is estimated both patch-mutually and
patch-independently. Since the shape representations are
repositioned based on separate patch embeddings extracted
by the SDF encoders, the key to recovering the authentic
shape SDFs from the joint decoder is to ensure that the
generated SDF representations are also distributed indepen-
dently in patches. From the qualitative results, it can be
inferred that the inner network is conducive to recovering
the independently distributed patch representations.

Inner network architecture. As for the UinU-Net archi-
tecture, we have conducted ablation experiments on several
variants for the inner network to validate the effectiveness of
the final design. The results have shown in Table 3. Accord-
ing to the results, it can be inferred that the inner outer con-
catenation mechanism and spatial attention layer can gener-
ally improve the generation quality. Without the inner-outer

Table 2. Evaluating effectiveness of the UinU-Net architecture.

IoU↑ Acc↑ CLIP-S↑ TMD↓
U-Net [45] 0.187 80.98 29.35 0.171
UinU-Net (Ours) 0.194 88.56 30.88 0.169

Table 3. Evaluating effectiveness of the inner network design.

IoU↑ Acc↑ CLIP-S↑ TMD↓
UinU-Net 0.194 88.56 30.88 0.169
- w/o in-out concat 0.198 83.91 28.68 0.181
- w/o spatial attention 0.194 85.56 30.82 0.161

concatenation mechanism, the accuracy score and CLIP-S
have significant decreases, indicating that the information
transmission mechanism has affected the semantic authen-
ticity and conformance of the generated shapes. Accuracy
score has dropped without the spatial attention module, in-
dicating that the introduction of patch-to-patch information
helps preserve the full shape semantics while recovering the
patch-wise representations.

4.3. Text-Guided Shape Completion

In this section, we validate the effectiveness of our ap-
proach on text-guided shape completion task. Given a par-
tial input shape, our goal is to generate the missing part from
the partial shape conditioned on the input text descriptions.
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Figure 7. Qualitative result of text-guide shape completion. Given a known partial shape, our approach can generate the missing part
based on text conditions.

A chair without arms.

A chair with arms.

A table with thin legs.

A table with thick legs.

A straight chair.

A sofa.

Figure 8. Qualitative result of text-guide shape manipulation. Given a known shape, our approach is able to manipulate the given shape
into the target shape based on the text descriptions.

For example, our approach can generate the body of a chair
based on the given chair legs, or generate the missing chair
legs according to the body of the chair. The qualitative
generation results are displayed in Figure 7. From the re-
sults, it can be seen that our approach is able to generate the
missing part of a shape based on the conditioned text, while
at the same time being well-blended with the given shape.
Moreover, from the generated examples including revolv-
ing throne, revolving toilet, and revolving sofa, it can be
inferred that our completion performance is not constrained
by the shape geometry in the training set.

4.4. Text-Guided Shape Manipulation

In this section, we demonstrate the effectiveness of our
approach for text-guided shape manipulation task. Given
a known shape and an instructive text description, our ap-
proach is capable of altering the given shape to the eligible
style. Figure 8 gives several qualitative illustrations for our
proposed approach. From the results, it can be summarized
that our approach can handle the shape manipulation of both
local shape structures (e.g. the existence/style of arms or
legs) or the overall shape characteristics (e.g. sofa or straight
chair). In addition, one key issue for our designed approach
is the choice for tmid. Since the shape characteristics usu-
ally form in the early stage of the reverse process, thus we
set tmid to relatively larger step numbers (600∼800 step).
In our experiments, we find that the original shape keeps un-
changed when tmid is too small, while overlarge tmid also
leads to the destruction of the original shape features.

5. Limitations and Conclusion

Limitations. In this paper, we have demonstrated the
superiority of our approach on the Text2Shape [6] dataset.
Nevertheless, Text2Shape focused on only two categories
from ShapeNet. This limits the generalization of our ap-
proach to further shape categories. Besides, due to the lack
of current shape-text datasets, we are also unable to validate
our approach on further benchmarks. In addition to intro-
ducing more datasets, another possible solution is to dis-
cover the possibilities of zero-shot text-to-shape generation
by distilling the knowledge from 2D vision-language mod-
els. Although several works have studied this problem [48],
it is still not possible to achieve real sense of flexible text-to-
shape generation. In the future, we are going to dig deeper
into text-to-shape problems, and search for a possible solu-
tion to flexible text-to-shape generation.

Conclusion. In this paper, we have focused on the is-
sue of text-to-shape synthesis. We proposed a diffusion
model-based framework, Diffusion-SDF, to generate vox-
elized SDFs for shapes conditioned on texts. Generally, we
propose a two-stage pipeline for shape generation. Firstly,
we propose a patch-wise autoencoder to generate Gaus-
sian SDF representations. Secondly, we introduce the Vox-
elized Diffusion model together with a novel UinU-Net de-
noiser to generate the patch-independent SDF representa-
tions. Further experiments are conducted on several tasks
related to text-to-shape synthesis. The results have demon-
strated that Diffusion-SDF has a strong capability to gener-
ate both high-quality and highly diversified 3D shapes.

8



A. Qualitative Illustrations
In this section, we provide more qualitative illustrations

for the generation results based on our proposed Diffusion-
SDF approach. Figure 9 shows some extra diversified gen-
erated samples for text-conditioned shape generation. Fig-
ure 10 displays further text-conditioned shape completion
results based on different input shapes. Figure 11 illustrates
several text-conditioned shape manipulation results from di-
verse initial shapes. The extra qualitative illustrations are
displayed at the end of this paper.
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proach to learning 3D surface generation. In CVPR, pages
216–224, 2018. 1

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 4

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In NeurIPS, 2020. 2, 3, 4

[20] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 5

[21] Moritz Ibing, Isaak Lim, and Leif Kobbelt. 3D shape gen-
eration with grid-based implicit functions. In CVPR, pages
13559–13568, 2021. 1

[22] Chiyu ”Max” Jiang, Avneesh Sud, Ameesh Makadia, Jing-
wei Huang, Matthias Nießner, and Thomas A. Funkhouser.
Local implicit grid representations for 3D scenes. In CVPR,
pages 6000–6009, 2020. 3

[23] Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.
SDFDiff: Differentiable rendering of signed distance fields
for 3D shape optimization. In CVPR, pages 1248–1258,
2020. 1

[24] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-
ral 3D mesh renderer. In CVPR, pages 3907–3916, 2018. 1

[25] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In CVPR, pages 2416–2425, 2022. 5

[26] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In ICLR, 2014. 2, 3

[27] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and
Bryan Catanzaro. Diffwave: A versatile diffusion model for
audio synthesis. In ICLR, 2021. 2

[28] Ke Li and Jitendra Malik. Implicit maximum likelihood es-
timation. 2018. 2

[29] Zhengzhe Liu, Yi Wang, Xiaojuan Qi, and Chi-Wing Fu. To-
wards implicit text-guided 3D shape generation. In CVPR,
pages 17875–17885, 2022. 2, 5, 6

[30] Andreas Lugmayr, Martin Danelljan, Andrés Romero, Fisher
Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting

9



using denoising diffusion probabilistic models. In CVPR,
pages 11451–11461, 2022. 5

[31] Shitong Luo and Wei Hu. Diffusion probabilistic models
for 3D point cloud generation. In CVPR, pages 2837–2845,
2021. 2

[32] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3D reconstruction in function space. In
CVPR, pages 4460–4470, 2019. 1, 2

[33] Oscar Michel, Roi Bar-On, Richard Liu, Sagie Benaim, and
Rana Hanocka. Text2mesh: Text-driven neural stylization
for meshes. In CVPR, pages 13482–13492, 2022. 2, 5

[34] Paritosh Mittal, Yen-Chi Cheng, Maneesh Singh, and Shub-
ham Tulsiani. Autosdf: Shape priors for 3D completion, re-
construction and generation. In CVPR, pages 306–315, 2022.
1, 2, 5, 6

[35] Charlie Nash, Yaroslav Ganin, S. M. Ali Eslami, and Pe-
ter W. Battaglia. Polygen: An autoregressive generative
model of 3D meshes. In ICML, pages 7220–7229, 2020.
1

[36] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: towards photorealis-
tic image generation and editing with text-guided diffusion
models. In ICML, pages 16784–16804, 2022. 2

[37] Jeong Joon Park, Peter Florence, Julian Straub, Richard A.
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, pages 165–174, 2019. 1

[38] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3D classification and segmentation. In CVPR, pages 77–
85, 2017. 1

[39] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, pages 5099–5108,
2017. 1

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, pages
8748–8763, 2021. 5, 6

[41] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. 2022. 2

[42] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, pages 8821–
8831, 2021. 2

[43] Danilo Jimenez Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In ICML, pages 1530–
1538, 2015. 2

[44] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In ICML, pages 1278–1286,
2014. 3

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10674–
10685, 2022. 2, 5, 7

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In MICCAI, pages 234–241, 2015. 2

[47] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J.
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. 2022. 2

[48] Aditya Sanghi, Hang Chu, Joseph G. Lambourne, Ye Wang,
Chin-Yi Cheng, Marco Fumero, and Kamal Rahimi Malek-
shan. Clip-forge: Towards zero-shot text-to-shape genera-
tion. In CVPR, pages 18582–18592, 2022. 2, 5, 6, 8

[49] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Mah-
eswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML,
pages 2256–2265, 2015. 2, 3

[50] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 5

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 4

[52] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. In
NeurIPS, pages 82–90, 2016. 2

[53] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
ShapeNets: A deep representation for volumetric shapes. In
CVPR, pages 1912–1920, 2015. 1

[54] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomı́r
Mech, and Ulrich Neumann. DISN: deep implicit surface
network for high-quality single-view 3D reconstruction. In
NeurIPS, pages 490–500, 2019. 1, 2

[55] Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, and
Honglak Lee. Perspective transformer nets: Learning single-
view 3D object reconstruction without 3D supervision. In
NeurIPS, pages 1696–1704, 2016. 2

[56] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu,
Serge J. Belongie, and Bharath Hariharan. Pointflow: 3D
point cloud generation with continuous normalizing flows.
In ICCV, pages 4540–4549, 2019. 1, 2

[57] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen
Lu, and Jie Zhou. Pointr: Diverse point cloud completion
with geometry-aware transformers. In ICCV, pages 12478–
12487, 2021. 5

[58] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. LION: latent
point diffusion models for 3D shape generation. 2022. 2

[59] Linqi Zhou, Yilun Du, and Jiajun Wu. 3D shape genera-
tion and completion through point-voxel diffusion. In ICCV,
pages 5806–5815, 2021. 2, 5

10



An wooden folding 
chair

A metallic folding 
chair

A high back chair 
with 3 metal leg

A curved, plastic, 
modern simple 

chair

A semi circular 
table

An L-shaped table

Antique looking 
side table

A table with a tear 
drop shaped 

wooden surface

Figure 9. More illustrations on diversified text-to-shape generation.
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Given shape A sofa A ball chair A straight chair A toilet

Figure 10. More illustrations on text-conditioned shape completion.
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Figure 11. More illustrations on text-conditioned shape manipulation.
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